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Abstract

The von Neumann-Morgenstern axioms are uncontroversial desiderata for

individual decision making. We say that a bargaining solution is rational, if it

can be interpreted as the most preferred alternatives under these axioms. Yet,

we find that neither the Nash nor the Kalai-Smorodinsky bargaining solution

is rational in this sense. We formalize two consequences of rationality, namely

that one can neither be strictly better off nor strictly worse off from randomizing

over different actions. These two axioms, together with other standard axioms,

characterize the relative utilitarian bargaining solution. We then implement this

bargaining solution in sub-game perfect equilibrium.
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1 Introduction

Bargaining is prevalent in many economic settings, for instance when both sides of

a market are concentrated. Typical examples are bargaining over prices between up-

and downstream firms, wage bargaining between firms and unions and bargaining

between health care providers and insurers. A common assumption in the applied

economic literature is that the outcome of the bargaining process is given by the Nash

bargaining solution (Nash, 1950) or a generalization thereof (Kalai, 1977).1 While

multiple bargaining protocols have been identified that support the Nash solution

non-cooperatively,2 the elegance of Nash’s axiomatization undoubtedly plays a part in

the popularity of the solution.

Another setting, in which bargaining is pervasive, is the settlement of disputes

outside of courts. Oftentimes, in order to facilitate agreement and prevent a costly

legal battle, arbitrators or mediators are appointed to make a decision. The interna-

tional division of the American Arbitration Association (AAA) alone handled over ten

thousand cases in the year 2022 with close to 16 billion dollars in total claims.3 In the

context of arbitration, Nash’s axioms could be understood as desirable characteristics

we would want an arbitrator to display.

Inherent to any economic decision is uncertainty about the final outcome. When

up- and downstream firms negotiate prices, they face uncertainty about consumer de-

mand. When firms and unions negotiate wages, they face uncertainty about future

inflation rates. Both as a normative desiderata and as a benchmark, economic actors

are typically assumed to deal with uncertainty rationally, meaning they act in accor-

dance with the von Neumann and Morgenstern (1944) axioms and maximize expected

utility. Similarly, we feel that the collective decision of a group, such as the resolution

1Recent applications of the Nash solution for bargaining between up- and downstream firms can

be found in Crawford and Yurukoglu (2012), Shang et al. (2016), Crawford et al. (2018), Rogerson

(2020) and Grunewald et al. (2023), for wage bargaining in Cahuc et al. (2006), Dobbelaere and

Kiyota (2018), de Pinto and Lingens (2019), Piluso et al. (2023) and Terai (2023), and for bargaining

between insurers and health care providers in Gaynor et al. (2015), Gowrisankaran et al. (2015), Ho

and Lee (2017), Dafny et al. (2019) and Ho and Lee (2019).
2See Section 3 for implementations of the Nash bargaining solution.
3See the 2022 AAA-ICDR B2B Case Statistics at https://www.adr.org/research. Accessed on

November 5, 2023.
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of a bargaining problem, should be rational in this sense. If an arbitrator or mediator

decides for the group, they should do so rationally as well.

We define a bargaining solution as rational, if it can be interpreted as the most pre-

ferred alternatives under some von Neumann-Morgenstern (vNM) preference relation.

According to the vNM paradigm, a lottery is evaluated by first considering the value

of each of the final outcomes and then taking a convex combination of these values.

By reducing a lottery to the final outcomes, it is implicitly ruled out that the decision

maker values the process of randomization. As a consequence, a decision maker would

only randomize over different outcomes if she were indifferent between them.4 The

Nash bargaining solution violates this condition. To demonstrate this, consider an

arbitrator who has to allocate a single indivisible item to either one of two agents.

Let ai denote the allocation where Agent i receives the item and let the arbitrator’s

preferences be captured by the utility function u. The Nash solution would prescribe

that the arbitrator flips a coin and allocates the item to the winner, i.e. a 50-50 lottery

between a1 and a2. The Nash solution selects neither a1 nor a2, over which the coin

randomizes. Hence, it demands that the arbitrator strictly prefers the coin-flip over

the deterministic allocations. However, by the vNM axioms, the utility of the coin flip

is given by 1
2
u(a1)+

1
2
u(a2), which cannot exceed both u(a1) and u(a2). Therefore, the

Nash solution is not rational. Note that the same is true for the bargaining solution

by Kalai and Smorodinsky (1975).

The incompatibility of rational risk preferences and ex-ante symmetry (i.e. choos-

ing the coin-flip) is well known in the literature on preference aggregation (Diamond,

1967; Harsanyi, 1975; Broome, 1984) and non-expected utility theory (Machina, 1989).5

Some authors claim that, since we have to value ex-ante symmetry as a fairness prin-

ciple, we need to give up rationality. We argue against this intuition later in this

section. We believe that fairness could also be understood as the arbitrator giving

equal consideration to every agent, which doesn’t necessitate that agents are made

equal in their outcomes. It seems that the AAA shares a similar notion of fairness, as

they write that the arbitrator should “achieve a fair, efficient, and economical resolu-

4Consider for instance mixing in Nash equilibrium, which requires that players are indifferent

between all actions over which they randomize.
5Ex-ante refers to the fact that the coin-flip is only symmetric before the coin has landed.
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tion of the dispute”, but also makes clear that they “do not split the baby” as they

decide “clearly in favor of one party in over 94.5% of the cases”.6

In this paper, we aim to find a rational bargaining solution. To capture a central

aspect of rationality, we propose the no benefit of randomization (NBR) axiom. This

axiom relates non-convex bargaining sets to their convex hull. A non-convex bargaining

set represents a situation, where randomization is either not feasible or not permitted.

Allowing for randomization means the group or arbitrator can choose from the convex

hull of this set. The axiom then says that if an alternative is selected by the bargaining

solution in the non-convex set, it must still be selected in the convex hull of the set.

Another consequence of the vNM axioms, and the flip-side of NBR, is that the agent

is never strictly worse off when randomizing. Hence, when randomization is possible

(i.e. the bargaining set is convex) and two alternatives are selected by the bargaining

solution, then any mixture (i.e. convex combination) of these two alternatives must be

selected as well. We call this axiom convexity (CONV). We find that NBR and CONV,

together with standard axioms, characterize the relative utilitarian (RU) bargaining

solution. The RU bargaining solution selects the alternatives with the highest sum

of normalized utilities. Utilities are normalized such that the disagreement point has

utility 0 and the best alternative has utility 1. The other axioms that underlie our

characterization are invariance to the utility scale, strong Pareto, weak symmetry and

a weaker version of Nash’s independence of irrelevant alternatives (IIA) axiom. The

proof for two agents is simple and resembles the one of Nash (1950). The proof easily

generalizes to any number of agents.

Besides a characterization, we also implement the RU bargaining solution in sub-

game perfect equilibrium. This means that we identify a bargaining protocol, which

in equilibrium leads to a RU-optimal alternative. We show that full implementation is

not possible and identify a game form that weakly implements our bargaining solution.

However, we are quite close to full implementation, as any RU-optimal alternative that

is strictly better than the disagreement point for every agent is an equilibrium outcome.

In this game, agents simultaneously make a proposal, consisting of an alternative and

a probability for each agent. In equilibrium, all agents propose the same RU-optimal

6See the Commercial Arbitration Rules and Mediation Procedures at https://www.adr.org/Rules,

pages 22, 23 and 26, and https://go.adr.org/split-the-baby.html. Accessed on November 5, 2023.
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alternative and this alternative is implemented immediately. If there is disagreement

among the agents, the proposal with the highest sum of probabilities has to be sequen-

tially approved by all agents. Agents can choose whether to accept the alternative or

receive a utility equal to the probability that the proposal assigns to them. Hence, the

probabilities can be understood as a claim regarding how good the alternative is for

each agent. If the claim was inflated, the alternative is rejected by at least one agent.

If an agent rejects, all other agents receive a utility equal to the disagreement point.

Finally, we consider two other rational solutions. First, we provide the first charac-

terization of the asymmetric relative utilitarian (ARU) solution. Similar to the asym-

metric Nash solution by Kalai (1977), the ARU solution generalizes the RU solution by

allowing for different weights on the individuals’ utilities. This can capture differences

in bargaining power, which is important for applications. Second, we characterize the

utilitarian solution. This solution maximizes the sum of individual utilities, without

normalizing them first. It is applicable when utilities have absolute meaning, for in-

stance in the case where utilities express individuals’ willingness to pay to bring about

a social alternative. The characterization follows immediately from our axiomatization

of the RU solution. We simply drop the invariance axiom and impose Nash’s IIA in

its full strength.

We now come back to the incompatibility of rationality and ex-ante symmetry.

Arguments in favor of rational risk preferences are well known and so we do not

recapitulate them here. Instead, we will argue that the desirability of the coin-flip is,

at least in part, due to reasons one is supposed to abstract from. First, in a bargaining

situation, individuals might not only receive utility from the final outcome, but might

also care about the procedure by which this outcome is implemented. An individual

might be better off losing a public coin-flip, compared to the item being allocated

to the other agent directly, because they care about being treated symmetrically.

Furthermore, an individual might be better off winning a public coin-flip, compared to

the item being allocated to them directly, because they feel better about receiving the

item, when the other agent had a chance as well. If this is the case, then the procedure

of flipping the coin publicly is different from simply mixing over the alternatives, for

instance by flipping the coin in secret. In fact, the former Pareto dominates the
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latter. A rational arbitrator cannot strictly prefer the secret coin-flip to either of

the direct allocations, but she could strictly prefer the procedure of flipping the coin

publicly, if individuals indeed care about procedures. In order to abstract from this

possibility, one should think of randomization as being performed in secret. Second,

flipping a coin seems desirable, because it is the obvious tie breaking rule, when the

arbitrator is indifferent between giving the item to either of the agents. However,

similar to choice correspondences in the theory of individual decision making, a set-

valued bargaining rule simply does not make a statement about how ties are broken

in case of multiplicity. It is perfectly compatible with rationality to impose such

a tie breaking rule as a second order principle, but only after first order principles

have pinned down the solution. Third, the coin-flip would prevent a biased arbitrator

from giving the item to her favored agent. However, since we propose a normative

theory to resolve the bargaining problem, the arbitrator is unbiased by assumption. To

summarize, rationality is compatible with a strict preference for public randomization,

with randomization as a matter of tie breaking and with randomization to limit a

biased arbitrator’s ability to discriminate. Once we abstract from these aspects, are

we still willing to give up rationality in favor of flipping the coin?

1.1 Literature

Other axiomatizations of the RU bargaining solution are by Pivato (2009) and Baris

(2018). Pivato (2009) considers preferences over bargaining solutions and then imposes

axioms on these preferences. This differs from the standard approach, established by

Nash (1950), where axioms are imposed on the bargaining solution directly. Baris

(2018) adapts the characterization of the utilitarian bargaining solution by Myerson

(1981) to a utility-scale invariant setting. Their central axiom can be interpreted as a

dynamic consistency condition. When facing uncertainty over what the bargaining set

will be, the arbitrator makes a plan, which specifies for each possible bargaining set a

utility vector. Then the expected utility vector must be the solution in the expected

bargaining set. Cao (1982) identifies necessary axioms for the RU bargaining solution

but does not provide a characterization. Note that Cao (1982), Pivato (2009) and

Baris (2018) assume the bargaining set to be convex, whereas we contribute to the
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literature on bargaining over non-convex sets (Kaneko, 1980; Zhou, 1997; Mariotti,

1998a,b; Conley and Wilkie, 1996; Denicolò and Mariotti, 2000; Ok and Zhou, 1999;

Nagahisa and Tanaka, 2002; Xu and Yoshihara, 2006; Zambrano, 2016).

Related to the RU bargaining solution is a large literature on preference aggregation

which characterizes a relative utilitarian rule (Karni, 1998; Dhillon and Mertens, 1999;

Segal, 2000; Börgers and Choo, 2017; Marchant, 2019; Sprumont, 2019; Brandl, 2021;

Peitler and Schlag, 2023). Especially related is Peitler and Schlag (2023). In an

application of their aggregation rule, the RU bargaining solution is derived from the

most preferred element of a menu-dependent social preference, where the menu consists

of the alternatives which are better for every agent than the disagreement point.

Related to rational bargaining is a literature on the rationalizability of bargain-

ing rules (Peters and Wakker, 1991; Bossert, 1994; Sánchez, 2000; Xu and Yoshihara,

2013). A bargaining rule is rationalizable if it can be interpreted as the most preferred

alternative under a single preference relation over utility vectors, which applies inde-

pendent of the bargaining set. In this literature, rationality is understood as satisfying

the weak axiom of revealed preference (or similar conditions). We take rationality to

mean that the bargaining solution is consistent with the maximization of a vNM pref-

erence relation, but we do not insist that it is the same preference relation for every

bargaining set.

Other implementations of the RU bargaining solution are Miyagawa (2002) and

Hagiwara (2020). They however consider the case of only two agents and strictly con-

vex bargaining sets. Note that under strictly convex bargaining sets, there is a unique

RU-optimal alternative. Our game on the other hand can have multiple equilibrium

outcomes, each corresponding to one of the multiple RU-optimal alternatives. Our im-

plementation is similar to the ones by Moulin (1984) and Moore and Repullo (1988).

Moulin (1984) implements the Kalai-Smorodinsky solution for convex bargaining sets.

As in our implementation, a proposal has to be sequentially approved by all players.

Moore and Repullo (1988) provide general results on the implementability of social

welfare functions in sub-game perfect equilibrium. The first stage of our game is sim-

ilar to theirs, however, they require each individual to report the state (i.e. the entire

utility function of every player), whereas we ask players to only report the utility for
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one alternative.

We present the axioms and state the representation theorem in Section 2. The

implementation is in Section 3. In Section 4 we consider other rational solutions.

Section 5 concludes.

2 Axiomatization

Let N := {1, ..., n} be a set of agents where n ∈ N and n ≥ 2. A bargaining problem

(S, d) consists of a bargaining set S ⊆ Rn and a disagreement point d ∈ S. We simplify

notation by normalizing the disagreement point to d = (0, ..., 0) and write S instead

of (S, d). Let R+ denote the positive real numbers including 0. We restrict attention

to bargaining sets S where (i) S ⊆ Rn
+ (ii) S is compact and (iii) for each i ∈ N there

exists a u ∈ S such that ui > 0. We denote the domain of bargaining sets that satisfy

these properties by S. A bargaining solution f is a correspondence that assigns to

every S ∈ S a non-empty subset of S.

Our central axiom is no benefit of randomization. For any R ⊂ Rn, let convR

denote the convex hull of R.

Axiom NBR (No Benefit of Randomization). For every S ∈ S,

f(S) ⊆ f(convS).

We illustrate the axiom with the help of following example. Consider a finite bargaining

set S, arising from the allocation of finitely many indivisible items. Now consider a

lottery l that realizes some allocation v ∈ S with probability λ ∈ (0, 1) and another

allocation v′ ∈ S with probability 1 − λ. Since the utilities in v and v′ express

individuals’ vNM preferences, Agent i’s utility of l is λvi + (1− λ)v′i. Hence, if l were

feasible, it would be a point in the bargaining set at λv + (1 − λ)v′. See the left

hand side of Figure 1 for an illustration when n = 2. Consequently, if every lottery

over the allocations in S were feasible, the bargaining set would be the convex hull

of S. This case is depicted on the right hand side of Figure 1. NBR says that if an

allocation is optimal in the non-convex bargaining set S, where randomization isn’t

feasible, then this allocation must still be optimal in the convex bargaining set conv S,

where randomization is feasible. Hence, randomization doesn’t introduce a lottery,
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(a) S.
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u1
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u2

(b) convS.

Figure 1: Convexification of the bargaining set.

strictly better for the group than the best allocation, as this would contradict that the

group acts in accordance with the vNM postulates. Note however that randomization

can introduce new utility vectors that are equally optimal as an allocation, which is

why NBR does not demand f(S) = f(convS).

Note that NBR has no bite when the domain is restricted to convex bargaining

sets, which is the classic setting of Nash (1950) and Kalai and Smorodinsky (1975).

However, these popular bargaining solutions have been extended in various ways to

domains that include non-convex sets. We find that these extensions violate NBR.

In the following we demonstrate this for the extensions by Xu and Yoshihara (2006).

Let fNash denote the Nash bargaining solution and fKS denote the Kalai-Smorodinsky

bargaining solution as in Xu and Yoshihara (2006).

Proposition 1. Both fNash and fKS violate NBR.

Proof. Assume n = 2 and consider the barging set

S = {(u1, u1) ∈ [0, 1]2 : u1 ≤ x or u2 ≤ x}

for some x ∈ (0, 1). Then fNash(S) = {(1, x), (x, 1)} and fKS(S) = {(x, x)}. However,

fNash(convS) = fKS(convS) = {(1+x
2
, 1+x

2
)}. Hence, NBR is violated. Figure 2

illustrates this for the Nash solution.
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(b) convS.

Figure 2: Violation of NBR by fNash. Stars indicate the solution.

Another consequence of the vNM axioms is that the arbitrator cannot be strictly

worse off under randomization. If two utility vectors are both optimal from the per-

spective of the arbitrator, then a lottery over these vectors, assuming it is feasible,

must also be optimal. This is captured by the following axiom.

Axiom CONV (Convexity). For every S ∈ S, f(S) is convex whenever S is convex.

Note that both the Nash and KS bargaining solution trivially satisfy this axiom, since

these solutions are singletons whenever the bargaining set is convex.

Since the prominent bargaining solutions violate NBR and are therefore not ra-

tional, we are in need of an alternative solution. Besides the aforementioned axioms,

this solution should satisfy agreed upon desiderata. Both Nash (1950) and Kalai and

Smorodinsky (1975) agree that a solution should be Pareto efficient, invariant to the

utility scale and that it should give equal treatment to symmetric agents. These ax-

ioms have been formulated under the assumption that the solution is single-valued.

In the following, we translate these axioms to our setting, where the solution can be

set-valued.

Axiom PO (Pareto Optimality). For every S ∈ S, if u ∈ f(S) then there is no v ∈ S

such that v ̸= u and vi ≥ ui for all i ∈ N .

We say that α is a positive linear transformation if there exists k1, ..., kn > 0 such

that for any R ⊆ Rn, α(R) = {u ∈ Rn : (k1u1, ..., knun) ∈ R}.
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Axiom INV (Invariance). For every S ∈ S and positive linear transformation α,

f(α(S)) = α(f(S)).

For any R ⊆ Rn, we say that R is symmetric if for every u ∈ R, any permutation

of u is in R as well.

Axiom SYM (Symmetry). For every S ∈ S, if S is symmetric and u ∈ f(S) then

u = (x, ..., x) for some x ∈ R.

Note that SYM violates PO in non-convex settings. To see this, consider n = 2 and

S = {(0, 0), (1, 0.9), (0.9, 1)}. Then SYM would demand f(S) = {(0, 0)}, a violation of

PO. Therefore, for domains that include non-convex bargaining sets, symmetry needs

to be weakened.

Axiom WSYM (Weak Symmetry). For every S ∈ S, if S is symmetric then so is

f(S).

For the fourth and final axiom, Nash (1950) has independence of irrelevant alter-

natives (IIA) and Kalai and Smorodinsky (1975) have monotonicity. Note that IIA

would not be compatible with the axioms we have imposed so far (NBR, CONV, PO,

INV and WSYM) and there is no obvious extension of monotonicity to set-valued solu-

tions. However, there is a weaker version of IIA that is satisfied by both the Nash and

KS solution, which we call weak IIA.7 Furthermore, this axiom replaces monotonicity

in axiomatizations of the KS solution in non-convex settings (Nagahisa and Tanaka,

2002; Xu and Yoshihara, 2006). Since weak IIA is a common denominator of the Nash

and KS solution, we will impose it as well. Before we introduce this axiom, let us first

translate Nash’s IIA to a setting with set-valued solutions.

Axiom IIA (Independence of Irrelevant Alternatives). For every S, S ′ ∈ S, if S ′ ⊂ S

and f(S) ∩ S ′ is non-empty then

f(S ′) = f(S) ∩ S ′.

7Weak IIA and variations thereof have already appeared in Yu (1973), Roth (1977), Cao (1982),

Imai (1983), Dubra (2001), Nagahisa and Tanaka (2002), Xu and Yoshihara (2006) and Rachmilevitch

(2019).
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Next we state weak IIA. For any S ∈ S and i ∈ N let mi(S) := max{ui : u ∈ S}.

Furthermore, let m(S) := (mi(S))i∈N . Following Yu (1973), we call m(S) the utopian

point of S.

Axiom WIIA (Weak IIA). For every S, S ′ ∈ S, if S ′ ⊂ S, m(S ′) = m(S) and

f(S) ∩ S ′ is non-empty then

f(S ′) = f(S) ∩ S ′.

IIA says that removing points from the bargaining set does not change what is optimal

from the perspective of the group. WIIA weakens this condition, by imposing the

former demand only in cases where the removal of points does not change the utopian

point. The utopian point m(S) is the maximal possible utility of each agent under

the bargaining set S. While the utopian point typically isn’t feasible (i.e. m(S) /∈ S),

it is an anchor point that allows us to relate the utilities of different agents. Since

vNM utilities are unique only up to a positive affine transformation, comparisons of

absolute utility levels across different individuals are meaningless. However, by INV

we can normalize every bargaining set such that m(S) = (1, ..., 1). Then all utilities

express how well-off each agent is relative to their best possible outcome. In contrast to

absolute utility levels, this measure can be meaningfully compared across individuals.

Removing a point u ∈ S from S such that mi(S \ {u}) < mi(S) for some i ∈ N would

require us to re-normalize the bargaining set, which would change how points other

than u are perceived by the group. Unlike IIA, WIIA allows this change of perspective

to influence what is collectively optimal.

We show that the above axioms characterize the relative utilitarian bargaining

solution. Define fRU such that for every S ∈ S,

fRU(S) = argmax
u∈S

∑
i∈N

ui

mi(S)
.

Theorem 1. f satisfies NBR, CONV, PO, INV, WSYM and WIIA if and only if

f ≡ fRU.

For n = 2 the proof is short, simple and resembles the one of Nash (1950). For this

reason, we present it here in the main section. A proof for a general number of agents

is in Appendix A.
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Proof. First, consider the bargaining set Sx = {(0, 0), (1, 0), (0, 1), (1, x), (x, 1)} for

some x ∈ [0, 1], as illustrated in Figure 3. Note that Px := {(1, x), (x, 1)} is the set of

x 1
u1

x

1

u2

Figure 3: Sx.

Pareto optimal points in Sx and by PO, f(Sx) ⊆ Px. Furthermore, Sx is symmetric.

So by WSYM,

f(Sx) = Px = {(1, x), (x, 1)}. (1)

Second, consider the bargaining set conv Sx. By (1) and NBR, Px ⊆ f(convSx).

As convSx is convex, convPx ⊆ f(convSx) by CONV. Note that convPx = {u ∈

[0, 1]2 : u1 + u2 = 1+ x} and convSx = {u ∈ [0, 1]2 : u1 + u2 ≤ 1 + x}. Hence, convPx

is the set of Pareto-optimal points in convSx. Hence, by PO,

f(convSx) =
{
u ∈ [0, 1]2 : u1 + u2 = 1 + x

}
. (2)

See Figure 4 for an illustration. The dashed line indicates the solution.

Third, consider any bargaining set S ∈ S where m(S) = (1, 1). Let x∗ :=

maxu∈S(u1 + u2) − 1, which must exist due to our assumption of compactness. Note

that S ⊆ convSx∗ and that S ∩ f(convSx∗) is non-empty. Hence, (2) and WIIA imply

f(S) = S ∩ f(convSx∗) = argmax
u∈S

(u1 + u2). (3)

Fourth, note that for any S ∈ S there exists a bargaining set S ′ ∈ S with m(S ′) =

(1, 1) and a positive linear transformation α such that α(S) = S ′. Then by (3) and

INV,

f(S) = argmax
u∈S

(
u1

m1(S)
+

u2

m2(S)

)
. (4)
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Figure 4: convSx.

Above we have identified axioms that characterize the RU bargaining solution.

Next we show that these axioms are independent. We drop each of the axioms in

Theorem 1 and show that there is a solution, other than the RU solution, that satisfies

the remaining axioms.

(1) The Nash solution satisfies all axioms but NBR.

(2) Consider the solution which selects all maximal elements of the leximax preorder

whenever m(S) = (1, ..., 1). The solution for m(S) ̸= (1, ..., 1) is given by INV.

This solution satisfies all axioms but CONV.

(3) f(S) = {(0, ..., 0)} for all S ∈ S satisfies all axioms but PO.

(4) The utilitarian solution (Section 4.2) satisfies all axioms but INV.

(5) The asymmetric relative utilitarian solution (Section 4.1) satisfies all axioms but

WSYM.

(6) Let ωi(S) = 1 + max{ui : u ∈ S and ui+1 = mi+1(S)}mi(S)
−1 if i < n and

ωn(S) = 1 + max{un : u ∈ S and u1 = m1(S)}mn(S)
−1. Then the solution

f(S) = argmaxu∈S
∑

i∈N ωi(S)mi(S)
−1ui satisfies all axioms but WIIA.

This proves that the axioms are independent.
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3 Implementation

In the previous section we have provided a normative theory on how a group should

come to a solution in a bargain problem. However, how a group will arrive at a

solution depends on the game form that describes the bargaining process. In the spirit

of the Nash program (Nash, 1953), we implement the RU bargaining solution in sub-

game perfect equilibrium (SPE), meaning we identify a game form where the the RU

bargaining solution arises as the SPE outcome. In line with the existing literature

on implementation of the Nash bargaining solution (Nash, 1953; Rubinstein, 1982;

Binmore et al., 1986; Herrero, 1989; Howard, 1992; Chae and Yang, 1994; Krishna and

Serrano, 1996; Trockel, 2000; Miyagawa, 2002; Trockel, 2002; Güth et al., 2004; Gómez,

2006; Britz et al., 2010; Okada, 2010; Anbarci and Sun, 2013; Britz et al., 2014; Abreu

and Pearce, 2015; Qin et al., 2019; Hagiwara, 2020; Hu and Rocheteau, 2020; Harstad,

2023) and the Kalai-Smorodinsky bargaining solution (Moulin, 1984; Trockel, 1999;

Miyagawa, 2002; Haake, 2009; Anbarci and Boyd, 2011; Hagiwara, 2020), we assume

that the players have full information, i.e. know the utility functions of the other

players.8

The bargaining protocol we propose can be used by an arbitrator, who wants to

bring about a desirable outcome, but who does not know the utility functions of the

agents. For applicability in actual bargaining situations, it is important that the game

is simple and intuitive. For instance, we would not be satisfied with a game where

individuals have to report the state of the world, i.e. the entire utility function of

every player, as in Moore and Repullo (1988). Note that, as in the previous section,

we allow for non-convex bargaining problems, such that multiple alternatives can be

optimal. This complicates the game somewhat, as players have to coordinate on one

of multiple equilibria.

In the next section we outline the basic setting.

3.1 Preliminaries

Let A be a set of alternatives. We designate one alternative in A as the disagreement

alternative and denote it by adis. Let Θ be a set of states. For every θ ∈ Θ and i ∈ N ,

8See Serrano (2005, 2021) for a review of the literature on the Nash program.
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let uθ
i : A → [0, 1] denote Player i’s vNM utility function over A, normalized such that

uθ
i (adis) = 0 and maxa∈A uθ

i (a) = 1. For every θ ∈ Θ, let Sθ denote the bargaining

set associated with θ, i.e. Sθ := {(uθ
1(a), ..., u

θ
n(a)) : a ∈ A}. We assume that for

each θ ∈ Θ, Sθ ∈ S. For any θ ∈ Θ, we say that a ∈ A is RU-optimal under θ if

(uθ
1(a), ..., u

θ
n(a)) ∈ fRU(Sθ). For a game form g and any θ ∈ Θ, we denote by (g, θ)

the game with the game form g and players’ preferences according to uθ
1 to uθ

n. We say

that a game form g fully implements the RU bargaining solution in SPE if for every

θ ∈ Θ and a ∈ A, a is RU-optimal under θ if and only if a is an SPE outcome of (g, θ).

Unfortunately, full implementation is not possible, which we discuss in Section 3.3.

Instead, we fully implement the subset of RU-optimal alternatives that are strictly

better than adis for every player. Note that this weakly implements the RU bargaining

solution, meaning every SPE outcome is RU-optimal. We make two assumptions on

Θ.

Assumption A1. For every θ ∈ Θ, there exists an a ∈ A such that a is strictly

RU-optimal under θ.

Assumption A2. For every θ ∈ Θ and i ∈ N , there exists a bθi ∈ A such that

uθ
i (b

θ
i ) = 1 and uθ

j(b
θ
i ) = 0 for all j ∈ N \ {i}.

Next, we present the game form.

3.2 The Game

We now define the game form that fully implements the set of strictly RU-optimal

outcomes. We denote this game form by g∗. The game form has two stages, an initial

stage and, depending on the actions in the initial stage, an approval stage.

Initial Stage: Each player simultaneously makes a proposal (a, p), consisting of

an alternative a ∈ A and a list of n strictly positive probabilities p ∈ (0, 1]n. We

distinguish three cases:

(1) All players make the same proposal (a, p). Then a is implemented.

(2) There are exactly two distinct proposals (a, p) and (a′, p′).

(2a) If
∑

i∈N pi =
∑

i∈N p′i, then adis is implemented.
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(2b) If
∑

i∈N pi ̸=
∑

i∈N p′i, then go to the approval stage.

(3) There are three or more distinct proposals. We implement the alternative of the

proposal with the highest sum of probabilities that lies below n. In case of a tie,

one of those proposals is chosen at random.

Approval Stage: Let (a, p) and (a′, p′) denote the two distinct proposals of the ini-

tial stage and assume without loss of generality that
∑

i∈N pi >
∑

i∈N p′i. Each player

sequentially decides between accept and reject. If all players accept, then a is imple-

mented. If Player i rejects, then with probability pi, Player i can choose an alternative

and with probability 1 − pi, adis is implemented. Players who proposed (a′, p′) get

to choose first, otherwise the order is determined randomly. Figure 5 illustrates the

approval stage for three players, where Player 1 and 3 proposed (a, p) and Players 2

proposed (a′, p′).

2 1 3 a

N N N

adis adis adis2
decides

1
decides

3
decides

reject reject reject

accept accept accept

1− p2 1− p1 1− p3p2 p1 p3

Figure 5: Example of approval stage.

Now that we have described the game g∗, we can state the following theorem.

Theorem 2. If A1 and A2 are satisfied, then for every θ ∈ Θ and a ∈ A, a is a SPE

outcome of (g∗, θ) if and only if a is strictly RU-optimal under θ.

We sketch the proof here and provide a formal proof of the theorem in Appendix B.

We fix some θ ∈ Θ and omit it from now on. First, consider the approval stage and

let (a, p) denote the proposal with the higher sum of probabilities. Note that Player

i’s expected utility of rejecting is pi maxb∈A ui(b) + (1 − pi)ui(adis) = pi. Hence, if

pi > ui(a) for all i ∈ N , then the unique SPE is that all players accept and a is

implemented. However, if pi < ui(a) for some i ∈ N then some player will reject.
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Hence, one can interpret the vector p as a report about the utility of a for each player

and the approval stage as a test of whether this report was truthful. We say that the

report p of a proposal (a, p) is inflated if
∑

i∈N pi >
∑

i∈N ui(a) and we say that it is

truthful if p = u(a).

Next, consider the initial stage and assume that all players propose (a, u(a)) for

some strictly RU-optimal alternative a. We show that no deviation (a′, p′) is profitable

for Player j. There are three options for Player j, to report a higher sum, an equal sum

or a lower sum of probabilities. Reporting an equal sum would lead to adis. Reporting

a higher sum would mean that a′ is put to the test in the approval stage and that j will

decide last. However, because there is no alternative with a higher sum of utilities than

a, p′ is necessarily inflated and a′ will be rejected by some player before j. Reporting

a lower sum would mean that a is put to the test in the approval stage and that j will

decide first. However, since the report of the proposal (a, u(a)) was truthful, there is

an equilibrium where all accept and a is implemented anyways. In conclusion, there

is no profitable deviation for Player j.

Conversely, consider the case where all players propose (a, p), but a isn’t strictly

RU-optimal. If p is inflated, then there must be one Player j for whom pj > u(a). This

player can then put (a, p) to the test by deviating to a report with a lower sum. Player

j is allowed to decide first and rejects. If p is not inflated, then there is some player

who would prefer a strictly RU-optimal alternative a′ to a. This player can propose

a′ and report a probability for each player that is slightly below the true utility of a′.

Then a′ is put to the test in the approval stage and every player accepts.

Above we have shown that a non-optimal alternative cannot arise in equilibrium

through unanimous proposal, i.e. Case (1). However, we have yet to show that such

an alternative cannot arise in equilibrium via Cases (2b) or (3). Note that we have

designed Case (3) similar to the integer game in Moore and Repullo (1988), such that

it cannot arise in equilibrium. A player can always “outbid” the others by choosing an

even higher sum below n. Furthermore, with three or more players, one can deviate

from Case (2b) to induce Case (3) and implement their most preferred alternative.

Showing that no sub-optimal equilibrium exists for two players is more involved and

we leave this to the formal proof in the appendix.
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Next, we return to the impossibility of full implementation.

3.3 Full Implementation

It is not possible to fully implement the RU bargaining solution with a domain as

general as S.

Proposition 2. Let n = 2 and assume that for every S ∈ S there exists a θ ∈ Θ such

that Sθ = S. Then there doesn’t exist an extensive game form g that fully implements

the RU bargaining solution.

A formal proof is in Appendix C. The intuition for this result goes as follows. Consider

a two agent bargaining problem S ∈ S where both (1, 0) and (0, 1) are in fRU(S). An

example of such a problem is the division of a dollar among risk neutral agents, where

any efficient division is RU-optimal, including allocating the entire dollar to one of the

agents. Now consider a state θ such that Sθ = S and a game form g that implements the

solution. Then there must exist two strategy profiles s+, s− that are SPE of (g, θ) and

where uθ(s+) := (uθ
1(s

+), uθ
2(s

+)) = (1, 0) and uθ(s−) = (0, 1). Since by assumption, 0

is the minimal utility for both players, uθ
1(s1, s

−
2 ) = 0 for all s1 and uθ

2(s
+
1 , s2) = 0 for

all s2. This in turn implies that (s+1 , s
−
2 ) is a Nash equilibrium with pay-offs (0, 0). In

the formal proof we then use (s+1 , s
−
2 ) to construct an SPE with pay-offs (0, 0). Since,

(0, 0) is not in fRU(S), the RU bargaining solution cannot be fully implemented.

We feel that the division of a dollar among two risk neutral agents is a canonical

problem that the implementation should be able to address. Hence, we did not want

to rule out such problems, for instance by assuming that the bargaining set is strictly

convex as in Miyagawa (2002) and Hagiwara (2020). Instead, we decided to exclude

solutions that assign a pay-off of 0 to one of the players.

4 Other Rational Solutions

4.1 Asymmetric Relative Utilitarian Solution

In Section 2 we have imposed a symmetry axiom as a normative requirement to treat

all agents of the group fairly. In applications however, we might want to take into
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account that individuals have different bargaining power. This can lead, in otherwise

symmetric situations, to asymmetric outcomes. It is therefore of interest to generalize

a given bargaining solution to a n − 1 parameter family of solutions, where each

parameter is a weight on an individual’s utility, representing their bargaining power.

Asymmetric generalizations have been provided for the Nash solution (Harsanyi and

Selten, 1972; Kalai, 1977) and the Kalai-Smorodisnky solution (Dubra, 2001). In the

following we provide the first generalization of the relative utilitarian solution. We say

that f is an asymmetric relative utilitarian solution if there exists (µ1, ..., µn) ∈ (0, 1)n

with
∑

i∈N µi = 1 such that for every S ∈ S,

f(S) = argmax
u∈S

∑
i∈N

µi
ui

mi(S)
.

We denote this solution by fARU. Unfortunately, for the characterization of fARU it

doesn’t suffice to merely drop the symmetry axiom.

Proposition 3. There exists an f such that f ̸= fARU and f satisfies NBR, CONV,

PO, INV and WIIA.

We prove the proposition by providing two solutions as counter-examples. Each of

these solutions can be ruled out by an additional axiom. These two additional axioms,

together with NBR, CONV, PO, INV and WIIA then characterize fARU. For ease of

exposition, we provide these counter-examples for n = 2.

The first counter-example is the solution f ′, which selects among the (symmetric)

relative utilitarian outcomes the one that most benefits Agent 1, formally

f ′(S) = argmax
u∈fRU(S)

u1.

First, we show that indeed the axioms, as stated in Proposition 3, are satisfied. It is

easy to see that PO, INV and WIIA are satisfied. Since the solution is a singleton,

CONV is trivially satisfied. While convexification can increase the set of relative

utilitarian outcomes, it cannot change the best relative utilitarian outcome of each

agent. Hence, NBR is satisfied as well. Next, we identify an axiom that rules out such

a solution. Note that the solution is discontinuous, in the sense of vNM continuity.

To see this, consider the following example, illustrated by Figure 6. An arbitrator has

to divide a dollar among two risk neutral agents. In addition, the arbitrator could
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λ 1
u1

1

u2

Figure 6: Division of a dollar, with the risky technology at (λ, 1).

choose to invest the dollar into a risky technology, which gives one dollar to Agent 2

for sure and with probability λ one dollar to Agent 1. If λ = 1, then the technology

is Pareto-dominant and selected by f ′. If λ = 0, the technology is just as good as

giving the dollar to Agent 2. Under f ′, the arbitrator strictly prefers to give the dollar

to Agent 1. Continuity would require that for some λ, the arbitrator is indifferent

between the technology and giving the dollar to Agent 1, such that both are selected

by the solution. However, such a λ does not exist under f ′, as the solution uniquely

selects the technology for every λ > 0. We impose the following axiom to ensure that

a bargaining solution is continuous.

Axiom C (Continuity). For every S ∈ S and u ∈ S \ f(S), there exists a λ ∈ [0, 1]

such that

f(S ∪ {λm(S) + (1− λ)u}) = f(S) ∪ {λm(S) + (1− λ)u}.

The axiom generalizes our previous example. Consider an arbitrary bargaining set S

and some point u in S that is not selected by the solution. Add a convex combination

λm(S) + (1 − λ)u between u and the utopian point m(S) to the original bargaining

set. For λ = 1, any solution satisfying PO must select the convex combination, as it

is equal to the utopian point. For λ = 0, the convex combination is equal to u and is

therefore not selected by the solution. Axiom C then states that for some λ between

0 and 1, the convex combination must be in the solution, together with the solution

of the original bargaining set S.
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The second counter-example is a solution that can be described by linear, but non-

parallel indifference curves. See Figure 7 for an illustration. The solution selects the

1
u1

1

u2

Figure 7: Non-parallel indifference curves.

utility vectors on the highest indifference curve. These indifference curves are the same

across all S ∈ S with m(S) = (1, 1). Solutions for bargaining sets with m(S) ̸= (1, 1)

are derived from INV. We call this solution f ′′. INV is then satisfied by assumption. It

is easy to see that PO and WIIA are satisfied. Finally, CONV and NBR are satisfied

because indifference curves are linear. Note that the fanning-out of indifference curves

is reminiscent of weighted expected utility (Chew and MacCrimmon, 1979; Chew,

1983). Such risk preferences violate the vNM independence axiom. Similarly, we can

rule out non-parallel indifference curves through an independence axiom.

Axiom I (Independence). For every S ∈ S, if u, v ∈ f(S) then for any x ∈ [0, 1],

{xm(S)+(1−x)u, xm(S)+(1−x)v} ⊆ f(S∪{xm(S)+(1−x)u, xm(S)+(1−x)v}).

The axiom captures vNM independence in the bargaining setting. Consider any bar-

gaining set, where the solution contains at least two points u and v. It is as if the

group was indifferent between these points. Now add two lotteries lu and lv that with

probability x give the utopian point m(S) and otherwise u, in case of lu, or v, in case

of lv. The possibility of the irrelevant alternative m(S) in both lu and lv does not

change the relative desirability between the two. Hence, both lu and lv must be in the

solution of the new bargaining set.
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Imposing Axioms C and I in addition, leads to the asymmetric relative utilitarian

bargaining solution.

Theorem 3. f satisfies NBR, CONV, PO, INV,WIIA, I and C if and only if f ≡ fARU.

We prove the theorem in Appendix D.

4.2 Utilitarian Solution

In the conventional understanding of the bargaining context, utilities derive from indi-

viduals’ vNM preferences over the available alternatives. Since a utility representation

of a vNM preference relation is unique only up to a positive affine transformation, the

invariance axiom ensures that the solution is insensitive to the choice of the represen-

tation. However, in alternative scenarios, the utility scale might convey information.

For instance, utilities might represent an individual’s willingness to pay to bring about

a given social alternative. Consider such a setting and think of the two agents who

bargain over a single indivisible item. If Agent 1 values the item at $100 and Agent

2 at $50, it seems reasonable to award the item to Agent 1. Under the invariance ax-

iom however, this bargaining problem should be treated identically to one where both

value the item at $50. In order to take the absolute scale of valuations into account,

INV must be dropped. Previously we argued that IIA imposes too stringent demands

on the solution, when utility scales lack significance. However, if utility scales are

meaningful, IIA can be assumed in its full strength. Adopting these two modifications

leads to the utilitarian bargaining solution (Myerson, 1981).

Theorem 4. f satisfies NBR, CONV, PO, WSYM and IIA if and only if for every

S ∈ S,

f(S) = argmax
u∈S

∑
i∈N

ui.

Proof. Follow the first three steps of the proof of Theorem 1 to find that f(S) =

argmaxu∈S
∑

i∈N ui whenever m(S) = (1, ..., 1). Note that an analogous argument can

be made whenm(S) = (x, ..., x) for any x > 0. Then by IIA, f(S) = argmaxu∈S
∑

i∈N ui

even if m(S) ̸= (x, ..., x).
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Note that if utilities are indeed valuations, the utilitarian sum is identical to eco-

nomic surplus, an ubiquitous measure of welfare. Hence, a group that bargains ratio-

nally will also bargain welfare-optimally in the typical sense. Conversely, our axioma-

tization provides justification for the use of economic surplus as a welfare measure.

5 Conclusion

This paper considers the implications of the vNM axioms on fair bargaining. We

find that these axioms are inconsistent with the prominent bargaining solutions by

Nash (1950) and Kalai and Smorodinsky (1975) and offer an alternative, the relative

utilitarian bargaining solution. On first sight, this solution might not seem very fair.

For instance, when dividing a dollar among risk neutral agents, giving the entire dollar

to one of the agents is permitted by the solution. However, fairness can be understood

as treating symmetric agents in the same way, giving them them equal consideration.

This is captured by the weak symmetry axiom. If giving the entire dollar to Agent

1 is permitted, then it must also be permitted to give the entire dollar to Agent 2.

However, we do not insist on equality. This allows us to make trade-offs. The relative

utilitarian bargaining solution is willing to improve one agent’s utility if it comes at

a smaller cost to another agent. Such comparisons are possible, as we compare each

agent based on the best outcome they could hope for.

Appendix A

We begin with a definition of Sx and Px for a general n ∈ N. For this purpose, the

following notation is introduced. For x ∈ [1, n], let ⌊x⌋ := max{k ∈ {1, ..., n} : k ≤ x},

meaning ⌊x⌋ is x rounded down to the closest integer. For any u ∈ Rn, let π(u) ⊂ Rn

denote the set containing u and all its permutations. For any k ∈ {0, ..., n}, let g(k)

denote the sequence of length n where gi(k) = 1 if i ≤ k and gi(k) = 0 otherwise.

Hence, g(0) = (0, ..., 0), g(1) = (1, 0, ..., 0) and so on. For any x ∈ [1, n], let h(x)

denote the sequence of length n where hi(x) = 1 if i ≤ x, hi(x) = x−⌊x⌋ if i = ⌊x⌋+1
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and hi(k) = 0 otherwise. For any x ∈ [1, n], let

Px := π(h(x)), Sx := Px ∪
⌊x⌋⋃
k=0

π(g(k)).

The following lemma identifies convSx and convPx.

Lemma 1. For any x ∈ [1, n], convSx = {u ∈ [0, 1]n :
∑

i∈N ui ≤ x} =: Rx and

convPx = {u ∈ [0, 1]n :
∑

i∈N ui = x} =: Qx.

Proof. An element u ∈ S ⊂ Rn is an extreme point of S if there doesn’t exist v, w ∈ S

and λ ∈ (0, 1) such that v ̸= w and u = λv+(1−λ)w. In the following we show that Sx

(resp. Px) contains all extreme points of Rx (resp. Qx). Then, by the Krein–Milman

theorem, the lemma follows from the fact that Sx ⊆ Rx and Px ⊆ Qx.

First, we show that an extreme point u of Rx (resp. Qx) can have at most one

coordinate uj such that 0 < uj < 1. Consider u ∈ Rx (resp. Qx) with 0 < uj < 1 and

0 < uk < 1 for some j ̸= k. Then there exists v, w ∈ Rx (resp. Qx) and ε > 0 such

that vi = wi = ui whenever i /∈ {j, k} and

vj = uj + ε, wj = uj − ε, (5)

vk = uk − ε, wk = uk + ε.

Since 1
2
v + 1

2
w = u, u is not an extreme point of Rx (resp. Qx).

Second, we show that if there is an extreme point of Rx with exactly one coordinate

uj such that 0 < uj < 1 then u ∈ π(h(x)). Assume u /∈ π(h(x)) and 0 < uj < 1. Then

there exists v, w ∈ Rx and ε > 0 such that vi = wi = ui whenever i ̸= j and

vj = uj + ε, wj = uj − ε.

Since 1
2
v + 1

2
w = u, u is not an extreme point of Rx.

By the above arguments, the only candidates for extreme points of Rx (resp. Qx)

are the points in Sx (resp. Px).

We now present the proof of Theorem 1. The proof is nearly identical to the sketch

in Section 2. Nevertheless, we state the proof for sake of completeness.
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Proof of Theorem 1

First, consider a bargaining set Sx for some x ∈ [1, n]. Note that Px is the set of

Pareto optimal points in Sx. Hence, by PO, f(Sx) ⊆ Px. Furthermore, note that Sx

is symmetric. So by WSYM,

f(Sx) = Px. (6)

Second, consider the bargaining set conv Sx. By (6) and NBR, Px ⊆ f(convSx).

As convSx is convex, convPx ⊆ f(convSx) by CONV. From Lemma 1 we can see that

convPx is the set of Pareto-optimal points in convSx. Then by PO,

f(convSx) =

{
u ∈ [0, 1]n :

∑
i∈N

ui = x

}
. (7)

Third, consider any bargaining set S ∈ S where m(S) = (1, ..., 1). Let x∗ :=

maxu∈S
∑

i∈N ui, which must exist due to our assumption of compactness. Note that

S ⊆ convSx∗ and that S ∩ f(convSx∗) is non-empty. Hence, (7) and WIIA imply

f(S) = S ∩ f(convSx∗) = argmax
u∈S

∑
i∈N

ui. (8)

Fourth, note that for any S ∈ S there exists a bargaining set S ′ ∈ S with m(S ′) =

(1, ..., 1) and a positive linear transformation α such that α(S) = S ′. Then by (8) and

INV,

f(S) = argmax
u∈S

(∑
i∈N

ui

mi(S)

)
. (9)

Appendix B

Proof of Theorem 2

We have already shown in the Section 3.2 that for every strictly RU-optimal alternative

there exists an SPE with this alternative is the outcome. Here, we prove the other

direction, namely that every SPE outcome is strictly RU-optimal. We fix some θ ∈ Θ

and omit it from now on. Let a denote some alternative that isn’t strictly RU-optimal.

First, consider Case (1) of the initial stage, where a is implemented through some

unanimous proposal (a, p). If
∑

i∈N pi >
∑

i∈N ui(a) then there exists a Player j for

whom pj > uj(a). This player can deviate to some proposal (a′, p′) with
∑

i∈N p′i <∑
i∈N pi and be the first to reject in the approval stage, which gives an expected utility
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of pj. If
∑

i∈N pi ≤
∑

i∈N ui(a), then there is at least one player who strictly prefers

some strictly RU-optimal alternative a′. Then this player can deviate to (a′, (u1(a
′)−

ε, ..., un(a
′)− ε)) for ε sufficiently small such that

∑
i∈N pi <

∑
i∈N (ui(a

′)− ε). Then

a′ is put to the test in the approval stage and the unique SPE outcome is that all

players accept and a′ is implemented.

Second, consider Case (2a), where there are two distinct proposals (a′, p′) and

(a′′, p′′) with
∑

i∈N p′i =
∑

i∈N p′′i , leading to adis. If n ≥ 3, then some Player i can

deviate in the initial stage to bring about Case (3) and choose bi. So assume n = 2.

If p′1 + p′2 = p′′1 + p′′2 > 1, then a player would be better off to propose a lower sum,

be the first to choose in the approval stage and then reject. If p′1 + p′2 = p′′1 + p′′2 ≤ 1,

then for some strictly RU-optimal alternative a′′′ a player can propose (a′′′, (u1(a
′′′)−

ε, u2(a
′′′)− ε)) for ε sufficiently small, leading to a′.

Third, consider Case (2b), where a is implemented through acceptance of the pro-

posal (a, p) by all players in the approval stage. Unless only a single Player j has

made the other proposal (a′, p′), any player can bring about Case (3) and choose

a more preferred alternative. Hence, assume only single Player j has made the

other proposal and a is among the best alternatives for all players other than j.

There must be some strictly RU-optimal alternative a′′ that is preferred to a by j.

Since a is unanimously approved,
∑

i∈N pi ≤
∑

i∈N ui(a). Player j can deviate to

(a′′, (u1(a
′′)− ε, ..., un(a

′′)− ε)) for ε sufficiently small, leading to a′′.

Fourth, consider Case (2b), where a is chosen after some player rejects in the

approval stage. Let Σ :=
∑

i∈N ui(b) for any RU-optimal alternative b. First, consider

n = 2. Let (a′, p′) be Player 1’s proposal and (a′′, p′′) be Player 2’s proposal. Without

loss of generality, assume that p′1+ p′2 > p′′1 + p′′2, such that Player 2 decides first in the

approval stage. Player 2 rejects and with probability p′2 chooses a with u(a) = (x, 1)

for some x ∈ [0, 1). This gives expected utility p′2 to Player 2 and p′2x to Player 1.

Consider the case where p′′1+p′′2 ≥ Σ. Player 1 has an incentive to deviate to a proposal

with a lower sum, unless

p′′1 ≤ p′2x. (10)

Furthermore, since p′′1 + p′′2 ≥ Σ,

p′′1 + p′′2 ≥ x+ 1. (11)
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Then (10) and (11) imply p′′2 = 1 and either x = 0 or p′2 = 1. But x = 0 is not possible

since this would imply p′′1 = 0 and this is not in the strategy-space of g∗. Hence p′2 = 1

and p′′1 = x. Since we consider the case p′′1 + p′′2 ≥ Σ and have found p′′ = u(a), it must

be that a is RU-optimal. Furthermore, since p′2 = 1, a is implemented with certainty.

This contradicts the assumption that the SPE outcome is sub-optimal. If p′′1 +p′′2 < Σ,

then Player 1 can implement any strictly RU-optimal alternative b by deviating to the

proposal (b, (u1(b)−ε, u2(b)−ε)) for ε sufficiently small. The only case in which Player

1 would have no incentive to do so, is if p′2 = 1 and if b is the best strictly RU-optimal

alternative for Player 1, which contradicts the assumption that the SPE outcome is

sub-optimal. This concludes the case n = 2. The argument extends to a general n.

Finally, consider Case (3) of the initial stage, where a is the alternative of the

proposal with the highest sum strictly below n. Then at least one Player j prefers bj

to a. This player can deviate to a proposal with an even higher sum below n and the

alternative bj.

This concludes the proof of Theorem 2.

Appendix C

We follow the notation of Moore and Repullo (1988). Consider a two player extensive

game form g. Let T denote the set of nodes. For any t ∈ T we denote by g(t) the

sub-game starting at node t. For any t ∈ T and i ∈ {1, 2} we denote by σi(t) the set of

actions of Player i. We assume that |σi(t)| ≥ 1 for all t ∈ T . If |σi(t)| = 1, then Player

i has no decision at t. If both |σ1(t)| > 1 and |σ2(t)| > 1 then both players move

simultaneously at t. Let σi :=×t∈T σi(t) denote the strategy space of Player i and let

σ = σ1 × σ2 denote the set of strategy profiles. For any s ∈ σ and t ∈ T we denote by

s|t the part of s that specifies the strategy profile for the game g(t). For any s ∈ σ and

t ∈ T we denote by s(t) ∈ σ1(t)×σ2(t) the action pair that s prescribes for the node t.

Terminal nodes are alternatives in A. For any s ∈ σ and θ ∈ Θ, uθ(s) = (uθ
1(s), u

θ
2(s))

denotes the utility vector of the terminal node that results from s. For any s ∈ σ and

t ∈ T we write uθ(s|t) to denote the utility vector of the terminal node that is reached

when starting at t and playing according to s.
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Proof of Proposition 2

Fix some θ ∈ Θ such that fRU(Sθ) contains both (1, 0) and (0, 1). In the following we

omit θ on the individual utility functions and the game. We have already established

in the main section that there must be s+, s− ∈ σ such that both are SPE of g with

u(s+) = (1, 0) and u(s−) = (0, 1) and that (s+1 , s
−
2 ) =: s0 is a NE with u(s0) = (0, 0).

In the following we construct s∗ ∈ σ such that s∗ is an SPE with u(s∗) = (0, 0).

Let t0, t0, ..., tk, tk+1 denote the nodes of the equilibrium path of s0, where t0 is the

initial node of g and tk+1 is a terminal node of g associated with the pay-off (0, 0).

Consider the second to last node tk. Let (xk, yk) ∈ σ1(tk) × σ2(tk) denote the action

pair that leads to tk+1, formally tk+1 = (tk, (xk, yk)). If there are only terminal nodes

succeeding tk, then g(tk) is a one-stage game and s0|tk is not only a NE of g(tk) but

also an SPE. Hence, s∗|tk = s0|tk ensures that s∗|tk is an SPE of g(tk) with outcome

(0, 0). If there are non-terminal nodes succeeding tk, then we construct s∗|tk as follows.

Choose s∗(tk) = (xk, yk). For any (xk, y) with y ∈ σ2(tk) choose s∗|(tk, (xk, y)) =

s+|(tk, (xk, y)). This ensures that s∗|(tk, (xk, y)) is an SPE of g(tk, (xk, y)) for all

y ∈ σ2(tk). Furthermore, it must be that u2(s
∗|(tk, (xk, y))) = 0 for all y ∈ σ2(tk),

because (tk, (xk, y)) can be reached by a unilateral deviation of Player 2 in the strat-

egy profile s+. Similarly, choose s∗|(tk, (x, yk)) = s−|(tk, (x, yk)) for all x ∈ σ1(tk). For

s∗|(tk, (x, y)) such that neither x = xk nor y = yk choose an arbitrary SPE. Note that

s∗|tk has been constructed such that an SPE is played at all nodes succeeding tk, such

that the outcome is (0, 0) and such that no Player has an incentive to deviate at tk.

Therefore, s∗|tk is an SPE of g(tk) with outcome (0, 0).

Next consider tl for any l ∈ {0, ..., k − 1}. Let (xl, yl) ∈ σ1(tl) × σ2(tl) denote the

decision that leads to tl+1, formally tl+1 = (tl, (xl, yl)). Assume s∗|tl+1 is an SPE of

g(tl+1) with outcome (0, 0). Choose s∗(tl) = (xl, yl) and construct s∗|(tl, (x, y)) for

(x, y) ̸= (xl, yl) just as before. Then s∗|tl is an SPE of g(tl) with outcome (0, 0). By

induction, s∗ is an SPE of g with outcome (0, 0). This concludes the proof.

Appendix D

We prove the Theorem 3 for n = 2. The proof for general n follows similarly as that of

Theorem 1. First, consider the bargaining set S = {(0, 0), (1, 0), (0, 1)}. By PO, there
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are three possible cases.

Case 1: f(S) = {(1, 0)}

Case 2: f(S) = {(0, 1)}

Case 3: f(S) = {(1, 0), (0, 1)}

Assume Case 1 holds true. By NBR, (1, 0) ∈ f(convS) and by WIIA, (0, 1) /∈

f(convS). By C, there exists a λ ∈ [0, 1] such that f(convS ∪{(λ, 1)}) = f(convS)∪

{(λ, 1)}. Note that λ > 0, as it would otherwise contradict the assumption that

(0, 1) /∈ f(convS). Furthermore, note that λ < 1 as it would otherwise contradict PO.

By NBR, {(1, 0), (λ, 1)} ⊆ f(conv(S ∪ {(λ, 1)})) and by CONV,

f(conv(S ∪ {(λ, 1)})) =
{
u ∈ [0, 1]2 : u1 + (1− λ)u2 = 1

}
. (12)

Second, consider the bargaining set

Sx := conv (S ∪ {(λ, 1)}) ∪ {(1, x), (x+ (1− x)λ, 1)}

for any x ∈ [0, 1]. By I and (12), {(1, x), (x + (1 − x)λ, 1)} ⊆ f(Sx). By NBR,

{(1, x), (x+ (1− x)λ, 1)} ⊆ f(convSx) and by CONV and PO,

f(convSx) =
{
u ∈ [0, 1]2 : u1 + (1− λ)u2 = 1 + (1− λ)x

}
. (13)

Third, consider any bargaining set S ∈ S where m(S) = (1, 1). Let x∗ :=

(1 − λ)−1 (maxu∈S(u1 + (1− λ)u2)− 1), which must exist due to our assumption of

compactness. Note that S ⊆ convSx∗ and that S ∩ f(convSx∗) is non-empty. Hence,

(13) and WIIA imply

f(S) = S ∩ f(convSx∗) = argmax
u∈S

(u1 + (1− λ)u2). (14)

Fourth, note that for any S ∈ S there exists a bargaining set S ′ ∈ S with m(S ′) =

(1, 1) and a positive linear transformation α such that α(S) = S ′. Then by (14) and

INV,

f(S) = argmax
u∈S

(
u1

m1(S)
+ (1− λ)

u2

m2(S)

)
. (15)

This concludes Case 1. Note that by an analogous argument, we can find an

analogous solution for Case 2 and 3. We can summarize the results for the different
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cases as follows. There exists (µ1, µ2) ∈ (0, 1)2 where µ1 + µ2 = 1 such that for any

S ∈ S,

f(S) = argmax
u∈S

(
µ1

u1

m1(S)
+ µ2

u2

m2(S)

)
. (16)

This concludes the proof.
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