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Abstract

The von Neumann-Morgenstern axioms are uncontroversial desiderata for

individual decision-making. We say that a bargaining solution is rational if it

can be interpreted as the most preferred alternatives under these axioms. Yet,

neither the Nash nor the Kalai-Smorodinsky bargaining solution is rational in

this sense. We formalize two consequences of rationality, namely that one can

neither be strictly better off nor strictly worse off from randomizing over different

actions. These two axioms, together with other standard axioms, characterize

the relative utilitarian bargaining solution. We then implement this bargaining

solution in sub-game perfect equilibrium.
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1 Introduction

Bargaining is prevalent in many economic settings, for instance, when both sides of

a market are concentrated. Typical examples are bargaining over prices between up-

and downstream firms, wage bargaining between firms and unions, and bargaining

between health care providers and insurers. A common assumption in the applied

economic literature is that the outcome of the bargaining process is given by the Nash

bargaining solution (Nash, 1950) or a generalization thereof (Kalai, 1977).1 While

multiple bargaining protocols have been identified that support the Nash solution

non-cooperatively,2 the elegance of Nash’s axiomatization undoubtedly plays a part in

the popularity of the solution.

Another setting in which bargaining is pervasive is the settlement of disputes out-

side of courts. Oftentimes, in order to facilitate agreement and prevent a costly legal

battle, arbitrators or mediators are appointed to make a decision. The international

division of the American Arbitration Association (AAA) alone handled over ten thou-

sand cases in the year 2022, with close to 16 billion dollars in total claims.3 In the

context of arbitration, Nash’s axioms could be understood as desirable characteristics

we would want an arbitrator to display.

Inherent to any economic decision is uncertainty about the final outcome. When

up- and downstream firms negotiate prices, they face uncertainty about consumer

demand. When firms and unions negotiate wages, they face uncertainty about future

inflation rates. Both as a normative desideratum and as a benchmark, economic

actors are typically assumed to deal with uncertainty rationally, meaning they act

in accordance with the von Neumann and Morgenstern (1944) axioms and maximize

expected utility. Similarly, we feel that the collective decision of a group, such as the

1Recent applications of the Nash solution for bargaining between up- and downstream firms can

be found in Crawford and Yurukoglu (2012), Shang et al. (2016), Crawford et al. (2018), Rogerson

(2020) and Grunewald et al. (2023), for wage bargaining in Cahuc et al. (2006), Dobbelaere and

Kiyota (2018), de Pinto and Lingens (2019), Piluso et al. (2023) and Terai (2023), and for bargaining

between insurers and health care providers in Gaynor et al. (2015), Gowrisankaran et al. (2015), Ho

and Lee (2017), Dafny et al. (2019) and Ho and Lee (2019).
2See Section 3 for implementations of the Nash bargaining solution.
3See the 2022 AAA-ICDR B2B Case Statistics at https://www.adr.org/research. Accessed on

November 5, 2023.
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resolution of a bargaining problem, should be rational in this sense. If an arbitrator

or mediator decides for the group, they should do so rationally as well.

We define a bargaining solution as rational if it can be interpreted as the most pre-

ferred alternatives under some von Neumann-Morgenstern (vNM) preference relation.

According to the vNM paradigm, a lottery is evaluated by first considering the value

of each of the final outcomes and then taking a convex combination of these values.

By reducing a lottery to the final outcomes, it is implicitly ruled out that the decision-

maker values the process of randomization. As a consequence, a decision maker would

only randomize over different outcomes if she were indifferent between them.4 The

Nash bargaining solution violates this condition. To demonstrate this, consider an

arbitrator who has to allocate a single indivisible item to either one of two agents.

Let ai denote the allocation where Agent i receives the item and let the arbitrator’s

preferences be captured by the utility function u. The Nash solution would prescribe

that the arbitrator flips a coin and allocates the item to the winner, i.e., a 50-50 lottery

between a1 and a2. The Nash solution selects neither a1 nor a2, over which the coin

randomizes. Hence, it demands that the arbitrator strictly prefers the coin flip over

the deterministic allocations. However, by the vNM axioms, the utility of the coin flip

is given by 1
2
u(a1)+

1
2
u(a2), which cannot exceed both u(a1) and u(a2). Therefore, the

Nash solution is not rational. Note that the same is true for the bargaining solution

by Kalai and Smorodinsky (1975).

The incompatibility of rational risk preferences and ex-ante symmetry (i.e., choos-

ing the coin-flip) is well known in the literature on preference aggregation (Dia-

mond, 1967; Harsanyi, 1975; Broome, 1984) and non-expected utility theory (Machina,

1989).5 Some authors claim that since we have to value ex-ante symmetry as a fairness

principle, we need to give up rationality. We argue against this intuition later in this

section. We believe that fairness can be understood as the arbitrator giving equal

consideration to every agent, which doesn’t necessitate that agents are made equal in

their expected outcomes. It seems that the AAA shares a similar notion of fairness,

as they write that the arbitrator should “achieve a fair, efficient, and economical reso-

4Consider for instance mixing in Nash equilibrium, which requires that players are indifferent

between all actions over which they randomize.
5Ex-ante refers to the fact that the coin-flip is only symmetric before the coin has landed.
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lution of the dispute”, but also makes clear that they “do not split the baby” as they

decide “clearly in favor of one party in over 94.5% of the cases”.6

In this paper, we aim to find a rational bargaining solution. To capture a central

aspect of rationality, we propose the no benefit of randomization (NBR) axiom. This

axiom relates non-convex bargaining sets to their convex hull. A non-convex bargaining

set represents a situation where randomization is either not feasible or not permitted.

Allowing for randomization means the group or arbitrator can choose from the convex

hull of this set. The axiom then says that if an alternative is selected by the bargaining

solution in the non-convex set, it must still be selected in the convex hull of the set.

Another consequence of the vNM axioms, and the flip-side of NBR, is that the agent

is never strictly worse off when randomizing. Hence, when randomization is possible

(i.e., the bargaining set is convex) and two alternatives are selected by the bargaining

solution, then any mixture (i.e., convex combination) of these two alternatives must be

selected as well. We call this axiom convexity (CONV). We find that NBR and CONV,

together with standard axioms, characterize the relative utilitarian (RU) bargaining

solution. The RU bargaining solution selects the alternatives with the highest sum

of normalized utilities. Utilities are normalized such that the disagreement point has

utility 0, and the best alternative has utility 1. The other axioms that underlie our

characterization are invariance to the utility-scale, strong Pareto, weak symmetry, and

a weaker version of Nash’s independence of irrelevant alternatives (IIA) axiom. The

proof for two agents is simple and resembles the one of Nash (1950). The proof easily

generalizes to any number of agents.

Besides a characterization, we also implement the RU bargaining solution in sub-

game perfect equilibrium. This means that we identify a bargaining protocol, which,

in equilibrium, leads to a RU-optimal alternative. We show that full implementation is

not possible and identify a game form that weakly implements our bargaining solution.

However, we are quite close to full implementation, as any RU-optimal alternative that

is strictly better than the disagreement point for every agent is an equilibrium outcome.

In this game, agents simultaneously make a proposal consisting of an alternative and

a probability for each agent. In equilibrium, all agents propose the same RU-optimal

6See the Commercial Arbitration Rules and Mediation Procedures at https://www.adr.org/Rules,

pages 22, 23 and 26, and https://go.adr.org/split-the-baby.html. Accessed on November 5, 2023.
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alternative, and this alternative is implemented immediately. If there is disagreement

among the agents, the proposal with the highest sum of probabilities has to be sequen-

tially approved by all agents. Agents can choose whether to accept the alternative or

receive a utility equal to the probability that the proposal assigns to them. Hence, the

probabilities can be understood as a claim regarding how good the alternative is for

each agent. If the claim was inflated, the alternative is rejected by at least one agent.

If an agent rejects, all other agents receive a utility equal to the disagreement point.

Finally, we consider two other rational solutions. First, we provide the first char-

acterization of the asymmetric relative utilitarian (ARU) solution. Similar to the

asymmetric Nash solution by Kalai (1977), the ARU solution generalizes the RU so-

lution by allowing for different weights on the individuals’ utilities. This can capture

differences in bargaining power, which is important for applications. Second, we char-

acterize the utilitarian solution. This solution maximizes the sum of individual utilities

without normalizing them first. It is applicable when utilities have absolute meaning,

for instance, in the case where utilities express individuals’ willingness to pay to bring

about a social alternative. The axiomatization requires only a small tweak to the ax-

ioms that characterize RU solution. We simply drop the invariance axiom and impose

Nash’s IIA in its full strength.

We now come back to the incompatibility of rationality and ex-ante symmetry. Ar-

guments in favor of rational risk preferences are well known, so we do not recapitulate

them here. Instead, we will argue that the desirability of the coin flip is, at least in

part, due to reasons one is supposed to abstract from. First, in a bargaining situation,

individuals might not only receive utility from the final outcome but might also care

about the procedure by which this outcome is implemented. An individual might be

better off losing a public coin flip compared to the item being allocated to the other

agent directly because they care about being treated symmetrically. Furthermore, an

individual might be better off winning a public coin flip, compared to the item being

allocated to them directly, because they feel better about receiving the item when the

other agent had a chance as well. If this is the case, then the procedure of flipping

the coin publicly is different from simply mixing over the alternatives, for instance,

by flipping the coin in secret. In fact, the former Pareto dominates the latter. A
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rational arbitrator cannot strictly prefer the secret coin flip to either of the direct

allocations, but she could strictly prefer the procedure of flipping the coin publicly if

individuals indeed care about procedures. In order to abstract from this possibility,

one should think of randomization as being performed in secret. Second, flipping a

coin seems desirable because it is the obvious tie-breaking rule when the arbitrator is

indifferent between giving the item to either of the agents. However, similar to choice

correspondences in the theory of individual decision-making, a set-valued bargaining

rule simply does not make a statement about how ties are broken in case of multi-

plicity. It is perfectly compatible with rationality to impose such a tie-breaking rule

as a second-order principle, but only after first-order principles have pinned down the

solution. Third, the coin flip would prevent a biased arbitrator from giving the item to

her favored agent. However, since we propose a normative theory to resolve the bar-

gaining problem, the arbitrator is unbiased by assumption. To summarize, rationality

is compatible with a strict preference for public randomization, with randomization as

a matter of tie-breaking and with randomization to limit a biased arbitrator’s ability

to discriminate. Once we abstract from these aspects, are we still willing to give up

rationality in favor of flipping the coin?

1.1 Literature

Other axiomatizations of the RU bargaining solution are by Pivato (2009) and Baris

(2018). Pivato (2009) considers preferences over bargaining solutions and then imposes

axioms on these preferences. This differs from the standard approach, established by

Nash (1950), where axioms are imposed on the bargaining solution directly. Baris

(2018) adapts the characterization of the utilitarian bargaining solution by Myerson

(1981) to a utility-scale invariant setting. Their central axiom can be interpreted as a

dynamic consistency condition. When facing uncertainty over what the bargaining set

will be, the arbitrator makes a plan, which specifies for each possible bargaining set a

utility vector. Then, the expected utility vector must be the solution in the expected

bargaining set. Cao (1982) identifies necessary axioms for the RU bargaining solution

but does not provide a characterization. Note that Cao (1982), Pivato (2009) and

Baris (2018) assume the bargaining set to be convex, whereas we contribute to the
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literature on bargaining over non-convex sets (Kaneko, 1980; Zhou, 1997; Mariotti,

1998a, 1998b; Conley & Wilkie, 1996; Denicolò & Mariotti, 2000; Ok & Zhou, 1999;

Nagahisa & Tanaka, 2002; Xu & Yoshihara, 2006; Zambrano, 2016).

Related to the RU bargaining solution is a large literature on preference aggrega-

tion, which characterizes a relative utilitarian rule (Karni, 1998; Dhillon & Mertens,

1999; Segal, 2000; Börgers & Choo, 2017; Marchant, 2019; Sprumont, 2019; Brandl,

2021; Peitler & Schlag, 2023; Karni & Weymark, 2024). Especially related is Peitler

and Schlag (2023). In an application of their aggregation rule, the RU bargaining solu-

tion is derived from the most preferred element of a menu-dependent social preference,

where the menu consists of the alternatives that are better for every agent than the

disagreement point.

Related to rational bargaining is a literature on the rationalizability of bargaining

rules (Peters & Wakker, 1991; Bossert, 1994; Sánchez, 2000; Xu & Yoshihara, 2013). A

bargaining rule is rationalizable if it can be interpreted as the most preferred alternative

under a single preference relation over utility vectors, which applies independently of

the bargaining set. In this literature, rationality is understood as satisfying the weak

axiom of revealed preference (or similar conditions). We take rationality to mean

that the bargaining solution is consistent with the maximization of a vNM preference

relation, but we do not insist that it is the same preference relation for every bargaining

set.

Implementations of the RU bargaining solution have been provided by Miyagawa

(2002) and Hagiwara (2020). They, however, consider the case of only two agents

and strictly convex bargaining sets. Note that under strictly convex bargaining sets,

there is a unique RU-optimal alternative. Our game, on the other hand, can have

multiple equilibrium outcomes, each corresponding to one of the multiple RU-optimal

alternatives. Our implementation is similar to the ones by Moulin (1984) and Moore

and Repullo (1988). Moulin (1984) implements the Kalai-Smorodinsky solution for

convex bargaining sets. As in our implementation, a proposal has to be sequentially

approved by all players. Moore and Repullo (1988) provides general results on the

implementability of social welfare functions in sub-game perfect equilibrium. The first

stage of our game is similar to theirs, however, they require each individual to report
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the state (i.e., the entire utility function of every player), whereas we ask players to

only report the utility for one alternative.

2 Axiomatization

Let N := {1, ..., n} be a set of agents where n ∈ N and n ≥ 2. A bargaining problem

(S, d) consists of a bargaining set S ⊆ Rn and a disagreement point d ∈ S. We simplify

notation by normalizing the disagreement point to d = (0, ..., 0) and write S instead of

(S, d). Let R+ denote the positive real numbers, including 0. We restrict attention to

bargaining sets S where (i) S ⊆ Rn
+ (ii) S is compact, and (iii) for each i ∈ N , there

exists a u ∈ S such that ui > 0. We denote the domain of bargaining sets that satisfy

these properties by S. A bargaining solution f is a correspondence that assigns to

every S ∈ S a non-empty subset of S.

Our central axiom is no benefit of randomization. For any R ⊂ Rn, let convR

denote the convex hull of R.

Axiom NBR (No Benefit of Randomization). For every S ∈ S,

f(S) ⊆ f(convS).

We illustrate the axiom with the help of the following example. Consider a finite

bargaining set S, arising from the allocation of finitely many indivisible items. Now

consider a lottery l that realizes some allocation v ∈ S with probability λ ∈ (0, 1) and

another allocation v′ ∈ S with probability 1−λ. Since the utilities in v and v′ express

individuals’ vNM preferences, Agent i’s utility of l is λvi + (1− λ)v′i. Hence, if l were

feasible, it would be a point in the bargaining set at λv + (1− λ)v′. See the left-hand

side of Figure 1 for an illustration when n = 2. Consequently, if every lottery over the

allocations in S were feasible, the bargaining set would be the convex hull of S. This

case is depicted on the right-hand side of Figure 1. NBR says that if an allocation

is optimal in the non-convex bargaining set S, where randomization isn’t feasible,

then this allocation must still be optimal in the convex bargaining set convS, where

randomization is feasible. Hence, randomization doesn’t introduce a lottery, strictly

better for the group than the best allocation, as this would contradict that the group

acts in accordance with the vNM postulates. Note, however, that randomization can
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(a) S.

1
u1
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u2

(b) convS.

Figure 1: Convexification of the bargaining set.

introduce new utility vectors that are equally optimal as an allocation, which is why

NBR does not demand f(S) = f(convS).

Note that NBR has no bite when the domain is restricted to convex bargaining

sets, which is the classic setting of Nash (1950) and Kalai and Smorodinsky (1975).

However, these popular bargaining solutions have been extended in various ways to

domains that include non-convex sets. We find that these extensions violate NBR.

In the following, we demonstrate this for the extensions by Xu and Yoshihara (2006).

Let fNash denote the Nash bargaining solution and fKS denote the Kalai-Smorodinsky

bargaining solution as in Xu and Yoshihara (2006).

Proposition 1. Both fNash and fKS violate NBR.

Proof. Assume n = 2 and consider the barging set

S = {(u1, u1) ∈ [0, 1]2 : u1 ≤ x or u2 ≤ x}

for some x ∈ (0, 1). Then fNash(S) = {(1, x), (x, 1)} and fKS(S) = {(x, x)}. However,

fNash(convS) = fKS(convS) = {(1+x
2
, 1+x

2
)}. Hence, NBR is violated. Figure 2

illustrates this for the Nash solution.

Another consequence of the vNM axioms is that the arbitrator cannot be strictly

worse off under randomization. If two utility vectors are both optimal from the per-
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(b) convS.

Figure 2: Violation of NBR by fNash. Stars indicate the solution.

spective of the arbitrator, then a lottery over these vectors, assuming it is feasible,

must also be optimal. This is captured by the following axiom.

Axiom CONV (Convexity). For every S ∈ S, f(S) is convex whenever S is convex.

Note that both the Nash and Kalai-Smorodinsky bargaining solutions trivially

satisfy this axiom since these solutions are singletons whenever the bargaining set is

convex.

Since the prominent bargaining solutions violate NBR and are therefore not ra-

tional, we are in need of an alternative solution. Besides the aforementioned axioms,

this solution should satisfy agreed-upon desiderata. Both Nash (1950) and Kalai and

Smorodinsky (1975) agree that a solution should be Pareto efficient, invariant to the

utility-scale, and that it should give equal treatment to symmetric agents. These ax-

ioms have been formulated under the assumption that the solution is single-valued.

In the following, we translate these axioms to our setting, where the solution can be

set-valued.

Axiom PO (Pareto Optimality). For every S ∈ S, if u ∈ f(S), then there is no v ∈ S

such that v ̸= u and vi ≥ ui for all i ∈ N .

We say that α is a positive linear transformation if there exists k1, ..., kn > 0 such

that for any R ⊆ Rn, α(R) = {u ∈ Rn : (k1u1, ..., knun) ∈ R}.
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Axiom INV (Invariance). For every S ∈ S and positive linear transformation α,

f(α(S)) = α(f(S)).

For any R ⊆ Rn, we say that R is symmetric if, for every u ∈ R, any permutation

of u is in R as well.

Axiom SYM (Symmetry). For every S ∈ S, if S is symmetric and u ∈ f(S), then

u = (x, ..., x) for some x ∈ R.

Note that SYM violates PO in non-convex settings. To see this, consider n = 2 and

S = {(0, 0), (1, 0.9), (0.9, 1)}. Then SYM would demand f(S) = {(0, 0)}, a violation of

PO. Therefore, for domains that include non-convex bargaining sets, symmetry needs

to be weakened.

Axiom WSYM (Weak Symmetry). For every S ∈ S, if S is symmetric, then so is

f(S).

For the fourth and final axiom, Nash (1950) has independence of irrelevant alter-

natives (IIA) and Kalai and Smorodinsky (1975) has monotonicity. Note that IIA

would not be compatible with the axioms we have imposed so far (NBR, CONV, PO,

INV, and WSYM) and there is no obvious extension of monotonicity to set-valued

solutions. However, there is a weaker version of IIA that is satisfied by both the Nash

and Kalai-Smorodinsky solution, which we call weak IIA.7 Furthermore, this axiom

replaces monotonicity in axiomatizations of the Kalai-Smorodinsky solution in non-

convex settings (Nagahisa & Tanaka, 2002; Xu & Yoshihara, 2006). Since weak IIA is

a common denominator of the Nash and Kalai-Smorodinsky solution, we will impose

it as well. Before we introduce this axiom, let us first translate Nash’s IIA to a setting

with set-valued solutions.

Axiom IIA (Independence of Irrelevant Alternatives). For every S, S ′ ∈ S, if S ′ ⊂ S

and f(S) ∩ S ′ is non-empty, then

f(S ′) = f(S) ∩ S ′.

7Weak IIA and variations thereof have already appeared in Yu (1973), Roth (1977), Cao (1982),

Imai (1983), Dubra (2001), Nagahisa and Tanaka (2002), Xu and Yoshihara (2006) and Rachmilevitch

(2019).
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Next, we state weak IIA. For any S ∈ S and i ∈ N let mi(S) := max{ui : u ∈ S}.

Furthermore, let m(S) := (mi(S))i∈N . Following Yu (1973), we call m(S) the utopian

point of S.

Axiom WIIA (Weak IIA). For every S, S ′ ∈ S, if S ′ ⊂ S, m(S ′) = m(S) and

f(S) ∩ S ′ is non-empty, then

f(S ′) = f(S) ∩ S ′.

IIA says that removing points from the bargaining set does not change what is

optimal from the perspective of the group. WIIA weakens this condition, by imposing

the former demand only in cases where the removal of points does not change the

utopian point. The utopian point m(S) is the maximal possible utility of each agent

under the bargaining set S. While the utopian point typically isn’t feasible (i.e.,

m(S) /∈ S), it is an anchor point that allows us to relate the utilities of different agents.

Since vNM utilities are unique only up to a positive affine transformation, comparisons

of absolute utility levels across different individuals are meaningless. However, by INV

we can normalize every bargaining set such that m(S) = (1, ..., 1). Then all utilities

express how well-off each agent is relative to their best possible outcome. In contrast to

absolute utility levels, this measure can be meaningfully compared across individuals.

Removing a point u ∈ S from S such that mi(S \ {u}) < mi(S) for some i ∈ N would

require us to re-normalize the bargaining set, which would change how points other

than u are perceived by the group. Unlike IIA, WIIA allows this change of perspective

to influence what is collectively optimal.

We show that the above axioms characterize the relative utilitarian bargaining

solution. Define fRU such that for every S ∈ S,

fRU(S) = argmax
u∈S

∑
i∈N

ui

mi(S)
.

Theorem 1. f satisfies NBR, CONV, PO, INV, WSYM and WIIA if and only if

f ≡ fRU.

For n = 2, the proof is short, simple, and resembles the one of Nash (1950). For

this reason, we present it here in the main section. A proof for a general number of

agents is in Appendix A.
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Proof. First, consider the bargaining set Sx = {(0, 0), (1, 0), (0, 1), (1, x), (x, 1)} for

some x ∈ [0, 1], as illustrated in Figure 3. Note that Px := {(1, x), (x, 1)} is the set of

x 1
u1

x

1

u2

Figure 3: Sx.

Pareto optimal points in Sx and by PO, f(Sx) ⊆ Px. Furthermore, Sx is symmetric.

So by WSYM,

f(Sx) = Px = {(1, x), (x, 1)}. (1)

Second, consider the bargaining set conv Sx. By (1) and NBR, Px ⊆ f(convSx).

As convSx is convex, convPx ⊆ f(convSx) by CONV. Note that convPx = {u ∈

[0, 1]2 : u1 + u2 = 1+ x} and convSx = {u ∈ [0, 1]2 : u1 + u2 ≤ 1 + x}. Hence, convPx

is the set of Pareto-optimal points in convSx. Hence, by PO,

f(convSx) =
{
u ∈ [0, 1]2 : u1 + u2 = 1 + x

}
. (2)

See Figure 4 for an illustration. The dashed line indicates the solution.

Third, consider any bargaining set S ∈ S where m(S) = (1, 1). Let x∗ :=

maxu∈S(u1 + u2) − 1, which must exist due to our assumption of compactness. Note

that S ⊆ convSx∗ and that S ∩ f(convSx∗) is non-empty. Hence, (2) and WIIA imply

f(S) = S ∩ f(convSx∗) = argmax
u∈S

(u1 + u2). (3)

Fourth, note that for any S ∈ S there exists a bargaining set S ′ ∈ S with m(S ′) =

(1, 1) and a positive linear transformation α such that α(S) = S ′. Then by (3) and

INV,

f(S) = argmax
u∈S

(
u1

m1(S)
+

u2

m2(S)

)
. (4)
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Figure 4: convSx.

Above we have identified axioms that characterize the RU bargaining solution.

Next, we show that these axioms are independent. We drop each of the axioms in

Theorem 1 and show that there is a solution, other than the RU solution, that satisfies

the remaining axioms.

(1) The Nash solution satisfies all axioms but NBR.

(2) Consider the solution that selects all maximal elements of the leximax preorder

whenever m(S) = (1, ..., 1). The solution for m(S) ̸= (1, ..., 1) is given by INV.

This solution satisfies all axioms but CONV.

(3) f(S) = {(0, ..., 0)} for all S ∈ S satisfies all axioms but PO.

(4) The utilitarian solution (Section 4.2) satisfies all axioms but INV.

(5) The asymmetric relative utilitarian solution (Section 4.1) satisfies all axioms but

WSYM.

(6) Let ωi(S) = 1 + max{ui : u ∈ S and ui+1 = mi+1(S)}mi(S)
−1 if i < n and

ωn(S) = 1 + max{un : u ∈ S and u1 = m1(S)}mn(S)
−1. Then the solution

f(S) = argmaxu∈S
∑

i∈N ωi(S)mi(S)
−1ui satisfies all axioms but WIIA.

This proves that the axioms are independent.
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3 Implementation

In the previous section, we have provided a normative theory on how a group should

come to a solution in a bargain problem. However, how a group will arrive at a

solution depends on the game form that describes the bargaining process. In the

spirit of the Nash program (Nash, 1953), we implement the RU bargaining solution

in sub-game perfect equilibrium (SPE), meaning we identify a game form where the

RU bargaining solution arises as the SPE outcome. In line with the existing literature

on implementation of the Nash bargaining solution (Nash, 1953; Rubinstein, 1982;

Binmore et al., 1986; Herrero, 1989; Howard, 1992; Chae & Yang, 1994; Krishna &

Serrano, 1996; Trockel, 2000; Miyagawa, 2002; Trockel, 2002; Güth et al., 2004; Gómez,

2006; Britz et al., 2010; Okada, 2010; Anbarci & Sun, 2013; Britz et al., 2014; Abreu

& Pearce, 2015; Qin et al., 2019; Hagiwara, 2020; Hu & Rocheteau, 2020; Harstad,

2023) and the Kalai-Smorodinsky bargaining solution (Moulin, 1984; Trockel, 1999;

Miyagawa, 2002; Haake, 2009; Anbarci & Boyd, 2011; Hagiwara, 2020), we assume

that the players have full information, i.e., know the utility functions of the other

players.8

The bargaining protocol we propose can be used by an arbitrator who wants to

bring about a desirable outcome but does not know the utility functions of the agents.

For applicability in actual bargaining situations, it is important that the game is simple

and intuitive. For instance, we would not be satisfied with a game where individuals

have to report the state of the world, i.e., the entire utility function of every player,

as in Moore and Repullo (1988). Note that, as in the previous section, we allow for

non-convex bargaining problems, such that multiple alternatives can be optimal. This

complicates the game somewhat, as players have to coordinate on one of multiple

equilibria.

In the next section, we outline the basic setting.

3.1 Preliminaries

Let A be a set of alternatives. We designate one alternative in A as the disagreement

alternative and denote it by adis. Let Θ be a set of states. For every θ ∈ Θ and i ∈ N ,

8See Serrano (2005, 2021) for a review of the literature on the Nash program.
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let uθ
i : A → [0, 1] denote Player i’s vNM utility function over A, normalized such that

uθ
i (adis) = 0 and maxa∈A uθ

i (a) = 1. For every θ ∈ Θ, let Sθ denote the bargaining

set associated with θ, i.e., Sθ := {(uθ
1(a), ..., u

θ
n(a)) : a ∈ A}. We assume that for

each θ ∈ Θ, Sθ ∈ S. For any θ ∈ Θ, we say that a ∈ A is RU-optimal under θ if

(uθ
1(a), ..., u

θ
n(a)) ∈ fRU(Sθ). For a game form g and any θ ∈ Θ, we denote by (g, θ)

the game with the game form g and players’ preferences according to uθ
1 to uθ

n. We say

that a game form g fully implements the RU bargaining solution in SPE if, for every

θ ∈ Θ and a ∈ A, a is RU-optimal under θ if and only if a is an SPE outcome of (g, θ).

Unfortunately, full implementation is not possible, which we discuss in Section 3.3.

Instead, we fully implement the subset of RU-optimal alternatives that are strictly

better than adis for every player. We call these alternatives strictly RU-optimal. Note

that this weakly implements the RU bargaining solution, meaning every SPE outcome

is RU-optimal.

A strictly RU-optimal alternative does not always exist. Consider, for example, the

case of allocating a single indivisible item without randomization. Giving the item to

any of the agents is RU-optimal, but not strictly RU-optimal, as none of the remaining

agents improves relative to the disagreement alternative. In order to implement the

strictly RU-optimal alternatives, we must ensure that at least one such alternative

exists. Hence, we impose the following restriction on Θ.

Assumption A1. For every θ ∈ Θ, there exists an a ∈ A such that a is strictly

RU-optimal under θ.

An additional assumption is imposed for convenience. We assume that for each

agent there exists an alternative that is among the best for this agent and equal to the

disagreement point for the remaining agents.

Assumption A2. For every θ ∈ Θ and i ∈ N , there exists a bθi ∈ A such that

uθ
i (b

θ
i ) = 1 and uθ

j(b
θ
i ) = 0 for all j ∈ N \ {i}.

A2 holds true for many bargaining situations. For example, when bargaining over

a surplus or over the allocation of goods, awarding everything to Player i would cor-

respond to the alternative bθi .

Next, we present the game form.
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3.2 The Game

We now define the game form that fully implements the set of strictly RU-optimal

outcomes. We denote this game form by g∗. The game form has two stages, an initial

stage and, depending on the actions in the initial stage, an approval stage.

Initial Stage: Each player simultaneously makes a proposal (a, p), consisting of

an alternative a ∈ A and a list of n strictly positive probabilities p ∈ (0, 1]n. We

distinguish three cases:

(1) Assume all players make the same proposal (a, p). Then a is selected.

(2) Assume there are exactly two distinct proposals (a, p) and (a′, p′).

(2a) If
∑

i∈N pi =
∑

i∈N p′i, then adis is selected.

(2b) If
∑

i∈N pi ̸=
∑

i∈N p′i, then go to the approval stage.

(3) Assume there are three or more distinct proposals. Then the alternative of the

proposal with the highest sum of probabilities that lies below n is selected. In

case of a tie, one of those proposals is chosen at random.

Approval Stage: For the approval stage to be reached, there must be exactly two

distinct proposals (a, p) and (a′, p′). Assume without loss of generality that
∑

i∈N pi >∑
i∈N p′i. Assign players into a sequence such that those who proposed (a′, p′) come

before those who proposed (a, p). Any such sequence will do. According to this

sequence, let players sequentially decide between accept and reject. If all players

accept, then a is selected. If Player i rejects, then with probability pi, Player i can

choose an alternative and with probability 1− pi, adis is selected.

Figure 5 illustrates the approval stage for three players, where Player 1 and 3

proposed (a, p) and Players 2 proposed (a′, p′).

Now that we have described the game g∗, we can state the following theorem.

Theorem 2. Assume A1 and A2 are satisfied. Then g∗ fully implements the strictly

RU-optimal alternatives. Formally, for every θ ∈ Θ and a ∈ A, a is an SPE outcome

of (g∗, θ) if and only if a is strictly RU-optimal under θ.

We sketch the proof here and provide a formal proof of the theorem in Appendix

B. We fix some θ ∈ Θ and omit it from now on. First, consider the approval stage

17



2 1 3 a

N N N

adis adis adis2
decides

1
decides

3
decides

reject reject reject

accept accept accept

1− p2 1− p1 1− p3p2 p1 p3

Figure 5: Example of approval stage.

and let (a, p) denote the proposal with the higher sum of probabilities. Note that

Player i’s expected utility of rejecting is pimaxb∈A ui(b) + (1− pi)ui(adis) = pi. Hence,

if pi > ui(a) for all i ∈ N , then the unique SPE is that all players accept and a is

implemented. However, if pi < ui(a) for some i ∈ N , then some player will reject.

Hence, one can interpret the vector p as a report about the utility of a for each player

and the approval stage as a test of whether this report was truthful. We say that the

report p of a proposal (a, p) is inflated if
∑

i∈N pi >
∑

i∈N ui(a) and we say that it is

truthful if p = u(a).

Next, consider the initial stage and assume that all players propose (a, u(a)) for

some strictly RU-optimal alternative a. We show that no deviation (a′, p′) is profitable

for Player j. There are three options for Player j, to report a higher sum, an equal sum

or a lower sum of probabilities. Reporting an equal sum would lead to adis. Reporting

a higher sum would mean that a′ is put to the test in the approval stage and that j will

decide last. However, because there is no alternative with a higher sum of utilities than

a, p′ is necessarily inflated and a′ will be rejected by some player before j. Reporting

a lower sum would mean that a is put to the test in the approval stage and that j will

decide first. However, since the report of the proposal (a, u(a)) was truthful, there is

an equilibrium where all accept, and a is implemented anyway. In conclusion, there is

no profitable deviation for Player j.

Conversely, consider the case where all players propose (a, p), but a isn’t strictly

RU-optimal. If p is inflated, then there must be one Player j for whom pj > u(a). This

player can then put (a, p) to the test by deviating to a report with a lower sum. Player

j is allowed to decide first and rejects. If p is not inflated, then there is some player
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who would prefer a strictly RU-optimal alternative a′ to a. This player can propose

a′ and report a probability for each player that is slightly below the true utility of a′.

Then a′ is put to the test in the approval stage and every player accepts.

Above, we have shown that a non-optimal alternative cannot arise in equilibrium

through a unanimous proposal, i.e., Case (1). However, we have yet to show that such

an alternative cannot arise in equilibrium via Cases (2b) or (3). Note that we have

designed Case (3) similar to the integer game in Moore and Repullo (1988), such that

it cannot arise in equilibrium. A player can always “outbid” the others by choosing an

even higher sum below n. Furthermore, with three or more players, one can deviate

from Case (2b) to induce Case (3) and implement their most preferred alternative.

Showing that no sub-optimal equilibrium exists for two players is more involved and

we leave this to the formal proof in the appendix.

3.3 Full Implementation

In this section, we discuss the case of full implementation. The following proposition

shows that it is not possible to fully implement the RU bargaining solution.

Proposition 2. Let n = 2 and assume that for every S ∈ S there exists a θ ∈ Θ such

that Sθ = S. Then there doesn’t exist an extensive game form g that fully implements

the RU bargaining solution.

A formal proof is in Appendix C. The intuition for this result goes as follows.

Consider a two-agent bargaining problem S ∈ S where both (1, 0) and (0, 1) are in

fRU(S). An example of such a problem is the division of a dollar among risk-neutral

agents, where any efficient division is RU-optimal, including allocating the entire dollar

to one of the agents. Now consider a state θ such that Sθ = S and a game form g

that implements the solution. Then there must exist two strategy profiles s+, s− that

are SPE of (g, θ) and where uθ(s+) := (uθ
1(s

+), uθ
2(s

+)) = (1, 0) and uθ(s−) = (0, 1).

Since by assumption, 0 is the minimal utility for both players, uθ
1(s1, s

−
2 ) = 0 for all s1

and uθ
2(s

+
1 , s2) = 0 for all s2. This, in turn, implies that (s+1 , s

−
2 ) is a Nash equilibrium

with pay-offs (0, 0). In the formal proof, we then use (s+1 , s
−
2 ) to construct an SPE

with pay-offs (0, 0). Since, (0, 0) is not in fRU(S), the RU bargaining solution cannot

be fully implemented.
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We feel that the division of a dollar among two risk neutral agents is a canonical

problem that the implementation should be able to address. Hence, we did not want

to rule out such problems, for instance by assuming that the bargaining set is strictly

convex as in Miyagawa (2002) and Hagiwara (2020). Instead, we decided to exclude

solutions that assign a pay-off of 0 to one of the players.

4 Other Rational Solutions

4.1 Asymmetric Relative Utilitarian Solution

In Section 2 we have imposed a symmetry axiom as a normative requirement to treat all

agents of the group fairly. In applications, however, we might want to take into account

that individuals have different bargaining power. This can lead, in otherwise symmetric

situations, to asymmetric outcomes. It is, therefore, of interest to generalize a given

bargaining solution to a n− 1 parameter family of solutions, where each parameter is

a weight on an individual’s utility, representing their bargaining power. Asymmetric

generalizations have been provided for the Nash solution (Harsanyi & Selten, 1972;

Kalai, 1977) and the Kalai-Smorodinsky solution (Dubra, 2001). In the following, we

provide the first generalization of the relative utilitarian solution. We say that f is

an asymmetric relative utilitarian solution if there exists (µ1, ..., µn) ∈ (0, 1)n with∑
i∈N µi = 1 such that for every S ∈ S,

f(S) = argmax
u∈S

∑
i∈N

µi
ui

mi(S)
.

We denote this solution by fARU. Unfortunately, for the characterization of fARU it

doesn’t suffice to merely drop the symmetry axiom.

Proposition 3. There exists an f such that f ̸= fARU and f satisfies NBR, CONV,

PO, INV and WIIA.

We prove the proposition by providing two solutions as counterexamples. Each of

these solutions can be ruled out by an additional axiom. These two additional axioms,

together with NBR, CONV, PO, INV and WIIA then characterize fARU. For ease of

exposition, we provide these counterexamples for n = 2.
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The first counterexample is the solution f ′, which selects among the (symmetric)

relative utilitarian outcomes the one that most benefits Agent 1, formally

f ′(S) = argmax
u∈fRU(S)

u1.

First, we show that the axioms, as stated in Proposition 3, are satisfied. It is easy to

see that PO, INV and WIIA are satisfied. Since the solution is a singleton, CONV

is trivially satisfied. While convexification can increase the set of relative utilitarian

outcomes, it cannot change the best relative utilitarian outcome of each agent. Hence,

NBR is satisfied as well. Next, we identify an axiom that rules out such a solution.

Note that the solution is discontinuous, in the sense of vNM continuity. To see this,

consider the following example, illustrated by Figure 6. An arbitrator has to divide a

λ 1
u1

1

u2

Figure 6: Division of a dollar, with the risky technology at (λ, 1).

dollar among two risk-neutral agents. In addition, the arbitrator could choose to invest

the dollar into a risky technology, which gives one dollar to Agent 2 for sure and with

probability λ one dollar to Agent 1. If λ = 1, then the technology is Pareto-dominant

and selected by f ′. If λ = 0, the technology is just as good as giving the dollar to Agent

2. Under f ′, the arbitrator strictly prefers to give the dollar to Agent 1. Continuity

would require that for some λ, the arbitrator is indifferent between the technology and

giving the dollar to Agent 1, such that both are selected by the solution. However,

such a λ does not exist under f ′, as the solution uniquely selects the technology for

every λ > 0. We impose the following axiom to ensure that a bargaining solution is

continuous.
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Axiom C (Continuity). For every S ∈ S and u ∈ S \ f(S), there exists a λ ∈ [0, 1]

such that

f(S ∪ {λm(S) + (1− λ)u}) = f(S) ∪ {λm(S) + (1− λ)u}.

The axiom generalizes our previous example. Consider an arbitrary bargaining set

S and some point u in S that is not selected by the solution. Add a convex combination

λm(S) + (1 − λ)u between u and the utopian point m(S) to the original bargaining

set. For λ = 1, any solution satisfying PO must select the convex combination, as it

is equal to the utopian point. For λ = 0, the convex combination is equal to u and is

therefore not selected by the solution. Axiom C then states that for some λ between

0 and 1, the convex combination must be in the solution, together with the solution

of the original bargaining set S.

The second counterexample is a solution that can be described by linear, but non-

parallel indifference curves. See Figure 7 for an illustration. The solution selects the

1
u1

1

u2

Figure 7: Non-parallel indifference curves.

utility vectors on the highest indifference curve. These indifference curves are the same

across all S ∈ S with m(S) = (1, 1). Solutions for bargaining sets with m(S) ̸= (1, 1)

are derived from INV. We call this solution f ′′. INV is then satisfied by assumption. It

is easy to see that PO and WIIA are satisfied. Finally, CONV and NBR are satisfied

because indifference curves are linear. Note that the fanning-out of indifference curves

is reminiscent of weighted expected utility (Chew & MacCrimmon, 1979; Chew, 1983).
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Such risk preferences violate the vNM independence axiom. Similarly, we can rule out

non-parallel indifference curves through an independence axiom.

Axiom I (Independence). For every S ∈ S, if u, v ∈ f(S), then for any x ∈ [0, 1],

{xm(S)+(1−x)u, xm(S)+(1−x)v} ⊆ f(S∪{xm(S)+(1−x)u, xm(S)+(1−x)v}).

The axiom captures vNM independence in the bargaining setting. Consider any

bargaining set, where the solution contains at least two points u and v. It is as if the

group was indifferent between these points. Now add two lotteries lu and lv that with

probability x give the utopian point m(S) and otherwise u, in case of lu, or v, in case

of lv. The possibility of the irrelevant alternative m(S) in both lu and lv does not

change the relative desirability between the two. Hence, both lu and lv must be in the

solution of the new bargaining set.

Imposing axioms C and I in addition, leads to the asymmetric relative utilitarian

bargaining solution.

Theorem 3. f satisfies NBR, CONV, PO, INV,WIIA, I and C if and only if f ≡ fARU.

We prove the theorem in Appendix D.

4.2 Utilitarian Solution

In the conventional understanding of the bargaining context, utilities derive from indi-

viduals’ vNM preferences over the available alternatives. Since a utility representation

of a vNM preference relation is unique only up to a positive affine transformation, the

invariance axiom ensures that the solution is insensitive to the choice of the represen-

tation. However, in alternative scenarios, the utility scale might convey information.

For instance, utilities might represent an individual’s willingness to pay to bring about

a given social alternative. Consider such a setting and think of the two agents who

bargain over a single indivisible item. If Agent 1 values the item at $100 and Agent 2

at $50, it seems reasonable to award the item to Agent 1. Under the invariance axiom,

however, this bargaining problem should be treated identically to one where both value

the item at $50. In order to take the absolute scale of valuations into account, INV

must be dropped. Previously we argued that IIA imposes too stringent demands on
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the solution when utility scales lack significance. However, if utility scales are mean-

ingful, IIA can be assumed in its full strength. Adopting these two modifications leads

to the utilitarian bargaining solution (Myerson, 1981).

Theorem 4. f satisfies NBR, CONV, PO, WSYM and IIA if and only if for every

S ∈ S,

f(S) = argmax
u∈S

∑
i∈N

ui.

Proof. Follow the first three steps of the proof of Theorem 1 to find that f(S) =

argmaxu∈S
∑

i∈N ui whenever m(S) = (1, ..., 1). Note that an analogous argument can

be made whenm(S) = (x, ..., x) for any x > 0. Then by IIA, f(S) = argmaxu∈S
∑

i∈N ui

even if m(S) ̸= (x, ..., x).

Note that if utilities are indeed valuations, the utilitarian sum is identical to eco-

nomic surplus, a ubiquitous measure of welfare. Hence, a group that bargains rationally

will also bargain welfare-optimally in the typical sense. Conversely, our axiomatization

provides justification for the use of economic surplus as a welfare measure.

5 Conclusion

This paper considers the implications of rational risk preferences on fair bargaining.

While the vNM axioms are formulated in a setting where the primitives are preferences

over alternatives, the canonical formulation of the bargaining problem by Nash (1950)

considers individuals’ utilities directly. It is, therefore, not obvious what it means for

a bargaining solution to deal with risk in a rational manner. We propose two axioms,

NBR and CONV, which capture the consequences of vNM preferences. Specifically,

these axioms describe the role of randomization under the vNM theory. Together

with standard axioms from the bargaining literature, these axioms lead to the relative

utilitarian bargaining solution.

One might remark that in light of Harsanyi (1955), who shows that a rational

group preference must be utilitarian, this result comes as no surprise. Note, however,

that NBR and CONV are necessary but not sufficient criteria for rational behavior

under risk. In fact, they are quite far from being sufficient, as shown by the solutions
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that become permissible when WSYM is dropped (Section 4.1). We, therefore, find

it quite remarkable that these two rather weak axioms already pin down the relative

utilitarian solution in the presence of standard bargaining axioms.

We believe that the relative utilitarian bargaining solution deserves a place in class-

rooms and textbooks, next to the solutions by Nash (1950) and Kalai and Smorodinsky

(1975). As we have shown, the axioms that characterize the RU solution are straight-

forward, and the proof is short and simple. Furthermore, like the Nash and Kalai-

Smorodinsky solution, the RU solution has a neat geometric interpretation. While

the Kalai-Smorodinsky solution is the intersection of the Pareto frontier and the 45◦

line and the Nash solution maximizes the area of the rectangle spanned by the origin

and the Pareto frontier, the RU solution maximizes the circumference of the rectangle

spanned by the origin and the Pareto frontier. We illustrate this with an example

depicted by Figure 8. The Pareto frontier is given by u2 = (1− u1)
2
5 . The Kalai-

1
u1

1

u2

●
■
▲

Figure 8: The Nash, Kalai-Smorodinsky and RU solution.

Smorodinsky solution is indicated by a circle, the Nash solution by a square and the

RU solution by a triangle.

We continue our discussion on the normative desirability of randomization, partic-

ularly when allocating an indivisible item between two agents. As noted in the intro-

duction, randomization may seem appealing for reasons we are supposed to abstract

from: individuals care about procedures, arbitrators might be biased, and random-

ization can be used to break ties. To disregard these factors, consider the following
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scenario:

(i) Individuals care only about the final outcomes and are completely indifferent

to the procedures by which these outcomes are achieved.

(ii) The arbitrator is entirely unbiased and is unaware of the agents’ identities.

(iii) To eliminate the use of randomization merely as a tie-breaking tool, assume

randomization is costly. Specifically, a randomization device can be used, which de-

stroys the item with a probability of c and, with a probability of 1−c, triggers another

lottery that assigns the item to either agent with equal probability.

What cost c should we be willing to incur for the sake of randomization? According

to both the Nash and Kalai-Smorodinsky solutions, any cost strictly below 1 should

be incurred. Therefore, both solutions are willing to sacrifice nearly the entire surplus.

According to the RU solution, it is not worth sacrificing any of the surplus. Ultimately,

only one of the agents can possess the item, and randomization does not alter this fact.

Appendix A

We begin with a definition of Sx and Px for a general n ∈ N. For this purpose, the

following notation is introduced. For x ∈ [1, n], let ⌊x⌋ := max{k ∈ {1, ..., n} : k ≤ x},

meaning ⌊x⌋ is x rounded down to the closest integer. For any u ∈ Rn, let π(u) ⊂ Rn

denote the set containing u and all its permutations. For any k ∈ {0, ..., n}, let g(k)

denote the sequence of length n where gi(k) = 1 if i ≤ k and gi(k) = 0 otherwise.

Hence, g(0) = (0, ..., 0), g(1) = (1, 0, ..., 0) and so on. For any x ∈ [1, n], let h(x)

denote the sequence of length n where hi(x) = 1 if i ≤ x, hi(x) = x−⌊x⌋ if i = ⌊x⌋+1

and hi(k) = 0 otherwise. For any x ∈ [1, n], let

Px := π(h(x)), Sx := Px ∪
⌊x⌋⋃
k=0

π(g(k)).

The following lemma identifies convSx and convPx.

Lemma 1. For any x ∈ [1, n], convSx = {u ∈ [0, 1]n :
∑

i∈N ui ≤ x} =: Rx and

convPx = {u ∈ [0, 1]n :
∑

i∈N ui = x} =: Qx.

Proof. An element u ∈ S ⊂ Rn is an extreme point of S if there doesn’t exist v, w ∈ S

and λ ∈ (0, 1) such that v ̸= w and u = λv+(1−λ)w. In the following, we show that Sx
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(resp. Px) contains all extreme points of Rx (resp. Qx). Then, by the Krein–Milman

theorem, the lemma follows from the fact that Sx ⊆ Rx and Px ⊆ Qx.

First, we show that an extreme point u of Rx (resp. Qx) can have at most one

coordinate uj such that 0 < uj < 1. Consider u ∈ Rx (resp. Qx) with 0 < uj < 1 and

0 < uk < 1 for some j ̸= k. Then there exists v, w ∈ Rx (resp. Qx) and ε > 0 such

that vi = wi = ui whenever i /∈ {j, k} and

vj = uj + ε, wj = uj − ε, (5)

vk = uk − ε, wk = uk + ε.

Since 1
2
v + 1

2
w = u, u is not an extreme point of Rx (resp. Qx).

Second, we show that if there is an extreme point of Rx with exactly one coordinate

uj such that 0 < uj < 1, then u ∈ π(h(x)). Assume u /∈ π(h(x)) and 0 < uj < 1.

Then there exists v, w ∈ Rx and ε > 0 such that vi = wi = ui whenever i ̸= j and

vj = uj + ε, wj = uj − ε.

Since 1
2
v + 1

2
w = u, u is not an extreme point of Rx.

By the above arguments, the only candidates for extreme points of Rx (resp. Qx)

are the points in Sx (resp. Px).

We now present the proof of Theorem 1. The proof is nearly identical to the sketch

in Section 2. Nevertheless, we state the proof for the sake of completeness.

Proof of Theorem 1

First, consider a bargaining set Sx for some x ∈ [1, n]. Note that Px is the set of

Pareto optimal points in Sx. Hence, by PO, f(Sx) ⊆ Px. Furthermore, note that Sx

is symmetric. So by WSYM,

f(Sx) = Px. (6)

Second, consider the bargaining set conv Sx. By (6) and NBR, Px ⊆ f(convSx).

As convSx is convex, convPx ⊆ f(convSx) by CONV. From Lemma 1 we can see that

convPx is the set of Pareto-optimal points in convSx. Then by PO,

f(convSx) =

{
u ∈ [0, 1]n :

∑
i∈N

ui = x

}
. (7)
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Third, consider any bargaining set S ∈ S where m(S) = (1, ..., 1). Let x∗ :=

maxu∈S
∑

i∈N ui, which must exist due to our assumption of compactness. Note that

S ⊆ convSx∗ and that S ∩ f(convSx∗) is non-empty. Hence, (7) and WIIA imply

f(S) = S ∩ f(convSx∗) = argmax
u∈S

∑
i∈N

ui. (8)

Fourth, note that for any S ∈ S there exists a bargaining set S ′ ∈ S with m(S ′) =

(1, ..., 1) and a positive linear transformation α such that α(S) = S ′. Then by (8) and

INV,

f(S) = argmax
u∈S

(∑
i∈N

ui

mi(S)

)
. (9)

This concludes the proof.

Appendix B

This section contains the proof of Theorem 2. We have already shown in the Section 3.2

that for every strictly RU-optimal alternative, there exists an SPE with this alternative

as the outcome. Here, we prove the other direction, namely that every SPE outcome

is strictly RU-optimal. We fix some θ ∈ Θ and omit it from now on. Let a denote

some alternative that isn’t strictly RU-optimal.

First, consider Case (1) of the initial stage, where a is implemented through some

unanimous proposal (a, p). If
∑

i∈N pi >
∑

i∈N ui(a) then there exists a Player j for

whom pj > uj(a). This player can deviate to some proposal (a′, p′) with
∑

i∈N p′i <∑
i∈N pi and be the first to reject in the approval stage, which gives an expected utility

of pj. If
∑

i∈N pi ≤
∑

i∈N ui(a), then there is at least one player who strictly prefers

some strictly RU-optimal alternative a′. Then this player can deviate to (a′, (u1(a
′)−

ε, ..., un(a
′)− ε)) for ε sufficiently small such that

∑
i∈N pi <

∑
i∈N (ui(a

′)− ε). Then

a′ is put to the test in the approval stage and the unique SPE outcome is that all

players accept and a′ is implemented.

Second, consider Case (2a), where there are two distinct proposals (a′, p′) and

(a′′, p′′) with
∑

i∈N p′i =
∑

i∈N p′′i , leading to adis. If n ≥ 3, then some Player i can

deviate in the initial stage to bring about Case (3) and choose bi. So assume n = 2.

If p′1 + p′2 = p′′1 + p′′2 > 1, then a player would be better off proposing a lower sum, be
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the first to choose in the approval stage and then reject. If p′1 + p′2 = p′′1 + p′′2 ≤ 1,

then for some strictly RU-optimal alternative a′′′ a player can propose (a′′′, (u1(a
′′′)−

ε, u2(a
′′′)− ε)) for ε sufficiently small, leading to a′.

Third, consider Case (2b), where a is implemented through acceptance of the pro-

posal (a, p) by all players in the approval stage. Unless only a single Player j has

made the other proposal (a′, p′), any player can bring about Case (3) and choose

a more preferred alternative. Hence, assume only single Player j has made the

other proposal and a is among the best alternatives for all players other than j.

There must be some strictly RU-optimal alternative a′′ that is preferred to a by j.

Since a is unanimously approved,
∑

i∈N pi ≤
∑

i∈N ui(a). Player j can deviate to

(a′′, (u1(a
′′)− ε, ..., un(a

′′)− ε)) for ε sufficiently small, leading to a′′.

Fourth, consider Case (2b), where a is chosen after some player rejects in the

approval stage. Let Σ :=
∑

i∈N ui(b) for any RU-optimal alternative b. First, consider

n = 2. Let (a′, p′) be Player 1’s proposal and (a′′, p′′) be Player 2’s proposal. Without

loss of generality, assume that p′1+ p′2 > p′′1 + p′′2, such that Player 2 decides first in the

approval stage. Player 2 rejects and with probability p′2 chooses a with u(a) = (x, 1)

for some x ∈ [0, 1). This gives expected utility p′2 to Player 2 and p′2x to Player 1.

Consider the case where p′′1+p′′2 ≥ Σ. Player 1 has an incentive to deviate to a proposal

with a lower sum unless

p′′1 ≤ p′2x. (10)

Furthermore, since p′′1 + p′′2 ≥ Σ,

p′′1 + p′′2 ≥ x+ 1. (11)

Then (10) and (11) imply p′′2 = 1 and either x = 0 or p′2 = 1. But x = 0 is not possible

since this would imply p′′1 = 0 and this is not in the strategy-space of g∗. Hence p′2 = 1

and p′′1 = x. Since we consider the case p′′1 + p′′2 ≥ Σ and have found p′′ = u(a), it must

be that a is RU-optimal. Furthermore, since p′2 = 1, a is implemented with certainty.

This contradicts the assumption that the SPE outcome is sub-optimal. If p′′1 +p′′2 < Σ,

then Player 1 can implement any strictly RU-optimal alternative b by deviating to the

proposal (b, (u1(b)−ε, u2(b)−ε)) for ε sufficiently small. The only case in which Player

1 would have no incentive to do so is p′2 = 1 and if b is the best strictly RU-optimal
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alternative for Player 1, which contradicts the assumption that the SPE outcome is

sub-optimal. This concludes the case n = 2. The argument extends to a general n.

Finally, consider Case (3) of the initial stage, where a is the alternative of the

proposal with the highest sum strictly below n. Then at least one Player j prefers bj

to a. This player can deviate to a proposal with an even higher sum below n and the

alternative bj.

This concludes the proof of Theorem 2.

Appendix C

We follow the notation of Moore and Repullo (1988). Consider a two-player extensive

game form g. Let T denote the set of nodes. For any t ∈ T , we denote by g(t) the

sub-game starting at node t. For any t ∈ T and i ∈ {1, 2}, we denote by σi(t) the

set of actions of Player i. We assume that |σi(t)| ≥ 1 for all t ∈ T . If |σi(t)| = 1,

then Player i has no decision at t. If both |σ1(t)| > 1 and |σ2(t)| > 1, then both

players move simultaneously at t. Let σi :=×t∈T σi(t) denote the strategy space of

Player i and let σ = σ1 × σ2 denote the set of strategy profiles. For any s ∈ σ and

t ∈ T , we denote by s|t the part of s that specifies the strategy profile for the game

g(t). For any s ∈ σ and t ∈ T , we denote by s(t) ∈ σ1(t) × σ2(t) the action pair

that s prescribes for the node t. Terminal nodes are alternatives in A. For any s ∈ σ

and θ ∈ Θ, uθ(s) = (uθ
1(s), u

θ
2(s)) denotes the utility vector of the terminal node that

results from s. For any s ∈ σ and t ∈ T , we write uθ(s|t) to denote the utility vector

of the terminal node that is reached when starting at t and playing according to s.

Proof of Proposition 2

Fix some θ ∈ Θ such that fRU(Sθ) contains both (1, 0) and (0, 1). In the following, we

omit θ on the individual utility functions and the game. We have already established

in the main section that there must be s+, s− ∈ σ such that both are SPE of g with

u(s+) = (1, 0) and u(s−) = (0, 1) and that (s+1 , s
−
2 ) =: s0 is a NE with u(s0) = (0, 0).

In the following, we construct s∗ ∈ σ such that s∗ is an SPE with u(s∗) = (0, 0).

Let t0, t0, ..., tk, tk+1 denote the nodes of the equilibrium path of s0, where t0 is the

initial node of g and tk+1 is a terminal node of g associated with the pay-off (0, 0).
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Consider the second to last node tk. Let (xk, yk) ∈ σ1(tk) × σ2(tk) denote the action

pair that leads to tk+1, formally tk+1 = (tk, (xk, yk)). If there are only terminal nodes

succeeding tk, then g(tk) is a one-stage game and s0|tk is not only a NE of g(tk) but

also an SPE. Hence, s∗|tk = s0|tk ensures that s∗|tk is an SPE of g(tk) with outcome

(0, 0). If there are non-terminal nodes succeeding tk, then we construct s∗|tk as follows.

Choose s∗(tk) = (xk, yk). For any (xk, y) with y ∈ σ2(tk) choose s∗|(tk, (xk, y)) =

s+|(tk, (xk, y)). This ensures that s∗|(tk, (xk, y)) is an SPE of g(tk, (xk, y)) for all

y ∈ σ2(tk). Furthermore, it must be that u2(s
∗|(tk, (xk, y))) = 0 for all y ∈ σ2(tk),

because (tk, (xk, y)) can be reached by a unilateral deviation of Player 2 in the strat-

egy profile s+. Similarly, choose s∗|(tk, (x, yk)) = s−|(tk, (x, yk)) for all x ∈ σ1(tk). For

s∗|(tk, (x, y)) such that neither x = xk nor y = yk, choose an arbitrary SPE. Note that

s∗|tk has been constructed such that an SPE is played at all nodes succeeding tk, such

that the outcome is (0, 0) and such that no Player has an incentive to deviate at tk.

Therefore, s∗|tk is an SPE of g(tk) with outcome (0, 0).

Finally, consider tl for any l ∈ {0, ..., k − 1}. Let (xl, yl) ∈ σ1(tl) × σ2(tl) denote

the decision that leads to tl+1, formally tl+1 = (tl, (xl, yl)). Assume s∗|tl+1 is an SPE

of g(tl+1) with outcome (0, 0). Choose s∗(tl) = (xl, yl) and construct s∗|(tl, (x, y)) for

(x, y) ̸= (xl, yl) just as before. Then s∗|tl is an SPE of g(tl) with outcome (0, 0). By

induction, s∗ is an SPE of g with outcome (0, 0). This concludes the proof.

Appendix D

We prove the Theorem 3 for n = 2. The proof for general n follows similarly as that of

Theorem 1. First, consider the bargaining set S = {(0, 0), (1, 0), (0, 1)}. By PO, there

are three possible cases.

Case 1: f(S) = {(1, 0)}

Case 2: f(S) = {(0, 1)}

Case 3: f(S) = {(1, 0), (0, 1)}

Assume Case 1 holds true. By NBR, (1, 0) ∈ f(convS) and by WIIA, (0, 1) /∈

f(convS). By C, there exists a λ ∈ [0, 1] such that f(convS ∪{(λ, 1)}) = f(convS)∪

{(λ, 1)}. Note that λ > 0, as it would otherwise contradict the assumption that

(0, 1) /∈ f(convS). Furthermore, note that λ < 1 as it would otherwise contradict PO.
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By NBR, {(1, 0), (λ, 1)} ⊆ f(conv(S ∪ {(λ, 1)})) and by CONV,

f(conv(S ∪ {(λ, 1)})) =
{
u ∈ [0, 1]2 : u1 + (1− λ)u2 = 1

}
. (12)

Second, consider the bargaining set

Sx := conv (S ∪ {(λ, 1)}) ∪ {(1, x), (x+ (1− x)λ, 1)}

for any x ∈ [0, 1]. By I and (12), {(1, x), (x + (1 − x)λ, 1)} ⊆ f(Sx). By NBR,

{(1, x), (x+ (1− x)λ, 1)} ⊆ f(convSx) and by CONV and PO,

f(convSx) =
{
u ∈ [0, 1]2 : u1 + (1− λ)u2 = 1 + (1− λ)x

}
. (13)

Third, consider any bargaining set S ∈ S where m(S) = (1, 1). Let x∗ :=

(1 − λ)−1 (maxu∈S(u1 + (1− λ)u2)− 1), which must exist due to our assumption of

compactness. Note that S ⊆ convSx∗ and that S ∩ f(convSx∗) is non-empty. Hence,

(13) and WIIA imply

f(S) = S ∩ f(convSx∗) = argmax
u∈S

(u1 + (1− λ)u2). (14)

Fourth, note that for any S ∈ S there exists a bargaining set S ′ ∈ S with m(S ′) =

(1, 1) and a positive linear transformation α such that α(S) = S ′. Then by (14) and

INV,

f(S) = argmax
u∈S

(
u1

m1(S)
+ (1− λ)

u2

m2(S)

)
. (15)

This concludes Case 1.

Note that by an analogous argument, we can find an analogous solution for Cases

2 and 3. We can summarize the results for the different cases as follows. There exists

(µ1, µ2) ∈ (0, 1)2 where µ1 + µ2 = 1 such that for any S ∈ S,

f(S) = argmax
u∈S

(
µ1

u1

m1(S)
+ µ2

u2

m2(S)

)
. (16)

This concludes the proof.
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