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Abstract

The axioms underlying Arrow’s impossibility theorem are very restrictive in

terms of what can be used when aggregating preferences. Social preferences may

not depend on the menu nor on preferences over alternatives outside the menu.

But context matters. So, we weaken these restrictions to allow for context to be

included. The context, as we define, describes which alternatives in the menu

and which preferences over alternatives outside the menu matter. We obtain

unique representations. These are discussed in examples involving markets, the

intertemporal well-being of an individual, and bargaining.
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1 Introduction

A central question in economics is how a social planner should compare alternatives

when the preferences of the individuals involved are in conflict. To determine what

is best for those individuals involved, the planner needs a rule that aggregates indi-

vidual preferences into a single social preference. Different strands of the economic

literature use very different rules. In the analysis of markets, consumer surplus is used

to evaluate the joint welfare of consumers. In the analysis of dynamically inconsistent

decision makers, intertemporal welfare is evaluated either by the Pareto criterion or

by the long-run utility (O’Donoghue & Rabin, 1999). In bargaining, the Nash bar-

gaining solution (Nash, 1950) and the Kalai-Smorodinsky bargaining solution (Kalai

& Smorodinsky, 1975) are prominent. Note here that bargaining problems can be

viewed as the search for the best allocation after aggregating preferences. Even within

their respective settings, these criteria can only be applied under narrow modeling

assumptions. More importantly, each of them fails to conform to a minimal set of

desiderata. Consumer surplus violates the neutrality axiom, as it is sensitive to the

labels of social alternatives. The Pareto criterion does not generate complete prefer-

ences, and long-run utility violates the Pareto principle. Neither the Nash nor the

Kalai-Smorodinsky bargaining solution can be interpreted as resulting from the most

preferred allocation under a social preference relation that satisfies the von Neumann

and Morgenstern (1944) axioms. Some of the above violations are not obvious and

will be demonstrated. In each of these settings, we could search separately for other

rules. However, we feel that the well-being of individuals should be traded off based on

principles that are appealing independently of the application. Therefore, we would

like to have a universal rule that can be applied to all settings. In light of Arrow

(1950, 1963), it is not clear whether such a rule exists. In the following, we argue that

some of Arrow’s demands are too stringent and should be relaxed. Before we state our

contentions, let us briefly revisit Arrow’s theorem.

Arrow (1963) shows that there is no aggregation rule that satisfies completeness,

transitivity, the Pareto principle, non-dictatorship, and independence of irrelevant al-

ternatives (IIA). If we want the social planner to be rational, benevolent, and im-

partial, then the first four axioms of Arrow serve as minimal requirements. Consider

2



now the fifth and last axiom, IIA. According to Arrow, IIA demands that when the

planner chooses from a menu of alternatives denoted by S, the choice C(S) is not

allowed to depend on individual preferences over alternatives outside S. In addition

to the above, Arrow assumes that social choice from any menu is made according to

a single social preference over all alternatives. Hence, Arrow implicitly assumes one

more axiom: menu independence (MI). Together, these axioms make it impossible to

aggregate preferences. Weakening either IIA or MI is a potential avenue to escape

the impossibility. We now argue that one can weaken either of them as neither is as

desirable as the first four axioms mentioned above.

First, we assess IIA with the aid of the following example by Pearce (2021). Imagine

being tasked with choosing between two social alternatives, x and y, for a group of

five kindergarten children. Strict preferences of the children are given in Figure 1. In

1 2 3 4 5

x x x x y

y y y y x

Figure 1: Children’s ordinal preferences.

isolation, one would be inclined to choose x over y as it is preferred by four of the

five children. However, we also learn that under x, each of the first four children gets

1001 toys, while under y, each of them only gets 1000 toys. Moreover, we are told that

the fifth child has a fatal illness that would be cured under y, whereas under x, the

fifth child dies a long and terrifying death. Unquestionably, this additional information

would change our preference to y over x. Pearce, therefore, concludes that information

besides individual preferences between x and y must be relevant for social choice. But

which information exactly? Let us embed the comparison between x and y into a social

choice problem in which, for each of the first four children, there exists an alternative zi

where only this child i dies and every other child gets 1001 toys. While the alternatives

z1 to z4 aren’t currently feasible (i.e., they are not in the menu), they are still possible

(in the sense of conceivable) and could be in the menu in a different situation. Assume

that Figure 2 depicts the von Neumann-Morgenstern preferences of the children over

all these alternatives. The inclusion of alternatives z1 to z4 provides a context that
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Figure 2: Children’s cardinal utility.

puts the alternatives x and y into perspective. Adding this context, it becomes clear

that going from y to x represents a marginal improvement for the first four children

at the expense of a substantial loss to the fifth child. IIA demands that we ignore this

additional information, which seems unreasonable. In order to include the context

provided by the infeasible alternatives, IIA has to be weakened.

Next, we assess MI. To do this, consider the following example by Sen (1993). An

individual faces the menu {x, y} where y means taking the last remaining apple from

the fruit basket at the dinner table, and x means taking nothing instead. Compare

this to the situation where there is a second apple in the basket, such that the menu

is {x, y, z} where z means taking the other apple. One can plausibly prefer x over y

under the first menu and y over x under the second. Similarly, our understanding of

fairness in a social choice setting might depend on what is currently feasible. When

comparing two social alternatives, x and y, information about the feasibility of other

alternatives provides a context that helps with the evaluation. In order to make use

of that information, MI has to be weakened.

Above we argued that neither IIA nor MI is desirable, as they ignore additional

information that can help in the assessment of social alternatives. Weakening either

of these conditions opens the possibility for preference aggregation. We are looking

for aggregation rules that abide by the von Neumann-Morgenstern axioms, satisfy the

strong Pareto condition, and are anonymous. These axioms strengthen Arrow’s min-

imal requirements for rationality, benevolence, and impartiality. We do not want to

drop IIA and MI completely, as we wish to limit the information that can be used

by the social planner. We, therefore, define two weaker axioms that identify when
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two social choice problems provide the same relevant information and thus yield the

same social preferences. These axioms implicitly define the context as the context

captures what is relevant. Independence of irrelevant comparable alternatives (IICA)

weakens IIA by requiring that preferences over alternatives outside the menu do not

influence the ranking if they are comparable for each individual to other alternatives.

Specifically, an alternative is comparable to others if each individual is indifferent to

some mixture of these other alternatives. Menu independence of comparable alterna-

tives (MICA) weakens MI by allowing alternatives to be dropped from the menu if

they are comparable to other alternatives in the menu. Each of these axioms, together

with our other axioms, uniquely defines an aggregation rule that can be applied to

any social choice or aggregation problem. Both of our representations are relative

utilitarian, meaning the social welfare of an alternative is identified as the sum of

individual utilities. When we weaken MI and maintain IIA, individual utilities are

normalized relative to the menu. When we weaken IIA and maintain MI, individual

utilities are normalized relative to the set of all possible alternatives within a given

setting. Normalizing means setting the utility of the worst alternative in the respective

set to 0 and the utility of the best alternative to 1. In a later section, we then use

our representations to quantify consumer welfare and the well-being of a dynamically

inconsistent decision maker and to derive a fair bargaining solution.

1.1 Literature

In the tradition of Arrow (1950, 1963), we axiomatize relative utilitarianism in a

multi-profile setting, meaning that at least one axiom relates social preferences across

different profiles of individual preference (e.g., IIA or IICA). Previous characterizations

of relative utilitarianism in this setting are Dhillon and Mertens (1999), Börgers and

Choo (2017) and Marchant (2019). Dhillon and Mertens (1999) implicitly assumes

menu independence and characterizes an aggregation rule that is the same as the one we

obtain when relaxing IIA. They have a bottom-up approach, as their implicit objective

is to present the weakest possible axioms that characterize relative utilitarianism. In

contrast, we have a top-down approach, as we stay close to Arrow (1963) and wish to

present the strongest axioms that don’t result in an impossibility. These two different
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approaches result in distinct axiomatic systems. Dhillon and Mertens (1999) has a

higher level of technical sophistication, which is exemplified by their continuity axiom

and intricate proof. In contrast, our axioms have a straightforward interpretation, and

our proof is much simpler. Note also that Dhillon and Mertens (1999) does not provide

a representation when some individuals have either identical or opposing preferences.

Börgers and Choo (2017) takes a revealed preference approach and imposes axioms on

the planner’s revealed marginal rate of substitution between individuals’ normalized

utilities. Marchant (2019) axiomatizes a relative utilitarian choice correspondence

rather than a social preference.

In a single-profile setting, meaning without axioms relating different profiles, rela-

tive utilitarianism has been axiomatized by Karni (1998), Segal (2000), and Karni and

Weymark (2024).

We build on a large body of literature that deals with the aggregation of vNM

preferences. The seminal paper is Harsanyi (1955), which shows that vNM rationality

of society and a Pareto axiom implies linear aggregation of utilities. Many extensions

and variations of this theorem followed (Domotor, 1979; Fishburn, 1984; Border, 1985;

Selinger, 1986; Coulhon & Mongin, 1989; Hammond, 1992; Weymark, 1993; Mongin,

1994; Weymark, 1994; De Meyer & Mongin, 1995; Zhou, 1997; Blackorby et al., 1999;

Mandler, 2005). While Harsanyi (1955) shows that social welfare must be a weighted

sum of individual utilities, he does not identify the weights. We start from his theorem

and impose additional axioms to pin down these weights. Another paper on the

aggregation of vNM preferences worthy of mention is Sprumont (2013), which drops the

assumption that social preferences are vNM and characterizes the relative egalitarian

aggregation rule. Our axiom MICA is quite close to the “independence of inessential

expansions” axiom in Sprumont (2013).

Closely related to the aggregation of risk preferences is the aggregation of subjec-

tive expected utility (SEU) preferences over uncertain acts. Since beliefs regarding

the state can differ across individuals, not only conflicting tastes but also conflicting

probability judgments have to be aggregated. This additional complication leads to

an impossibility result, even in the single-profile setting. Mongin (1995, 1998) shows

that society’s preferences cannot simultaneously satisfy the Pareto condition and have
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a SEU representation. To escape this impossibility, utilitarian aggregation rules ei-

ther weaken the rationality postulates underlying the SEU representation (Sprumont,

2019) or the Pareto condition (Gilboa et al., 2004; Brandl, 2021; Dietrich, 2021).

Most closely related is Sprumont (2019), which allows the social preferences to depend

on some reference set of relevant outcomes. This is mathematically similar to our

approach, where social preferences can depend on the menu. However, Sprumont’s

axioms don’t tell us what is relevant, as the relevant set is exogenous and part of the

social choice problem. Without additional restrictions, this would allow the planner

to justify nearly any decision by handpicking the relevant set as needed. One could

not simply reinterpret the reference set as the menu, as it is a set of outcomes, not a

set of acts.

Related to relative utilitarian aggregation rules is the literature on range voting

(Smith, 2000; Gaertner & Xu, 2012; Pivato, 2014; Macé, 2018). Under range voting,

a voter assigns a score between 0 and 1 to each candidate, and the candidate with the

highest sum of scores is selected as the winner.

We also mention a few of the many other papers on axiomatizations of aggregation

rules that start similarly to us from Arrow (1950, 1963) and relax axioms therein.

Notably, Sen (1993) drops MI and shows that impossibility still follows if IIA is replaced

by binary IIA.1 To our knowledge, Sen (1993) is the only previous paper that points

out the implicit MI axiom in Arrow (1950, 1963). Saari (1998) and Maskin (2022)

relax IIA by allowing the comparison between two alternatives to depend on how

many other alternatives lie in between them.

2 Axiomatization

There is a society consisting of n individuals, where n ∈ N. The set of individuals

is denoted by N := {1, ..., n}. Furthermore, there is a set of possible alternatives

A, where A is finite.2 Each individual in society has rational preferences over the

1Binary IIA says that the social preference between any two alternatives x and y can only depend

on individual preferences between x and y. The literature often uses the notion of IIA and binary

IIA interchangeably. Note however that binary IIA is only implied by IIA if MI is assumed as well.
2In Appendix B we consider the case where A is infinite.
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possible alternatives. Formally, let △A denote the set of lotteries over A and let

R denote the set of logically possible von Neumann-Morgenstern (vNM) preferences

over △A. Individual preferences are then captured by a preference profile R ∈ Rn.

For a given profile R, we sometimes write ≽R
i to denote the i’th element in R. In

any given situation, only a subset S of the alternatives in A is feasible and could be

implemented by society. We call S the menu. For any S ⊆ A and R ∈ Rn, we call

(S,R) the society’s state, and we denote by Ω the set of all logically possible states.

An aggregation rule ≽∗ assigns to each state (S,R) ∈ Ω a binary relation ≽(S,R)
∗ over

△S. For exposition purposes we act as if there was a social planner that employs an

aggregation rule to evaluate the alternatives in the menu. Hence, for a given state

(S,R) we refer to ≽(S,R)
∗ as the planner’s evaluation.

We now impose axioms on how the social planner evaluates alternatives. Rational-

ity says that the evaluation is rational in the sense of abiding by the vNM axioms.

Axiom RA (Rationality). For each (S,R) ∈ Ω, ≽(S,R)
∗ satisfies the vNM axioms.

Rationality is normatively desirable and strengthens Arrow’s requirement that the

planner’s evaluation is complete and transitive. Furthermore, we believe that, since

individuals are assumed to be rational, an aggregation rule should preserve this char-

acteristic of the individuals.

Our second axiom says that the social planner is benevolent, such that the evalu-

ation respects the individuals’ preferences whenever these are not in conflict.

Axiom SP (Strong Pareto). For each (S,R) ∈ Ω and x, y ∈ △S, if x ≽R
i y for all

i ∈ N , then x ≽(S,R)
∗ y. If, in addition, x ≻R

i y for some i ∈ N , then x ≻(S,R)
∗ y.

SP strengthens Arrow’s Pareto condition.

Our third axiom is anonymity. Anonymity says that the planner’s evaluation must

not depend on the individual identities but only on the preferences themselves. Hence,

in a counterfactual world, where preferences are interchanged across the individuals,

the planner’s evaluation must be the same.

Axiom AN (Anonymity). For each (S,R), (S,R′) ∈ Ω, if R′ is a permutation of R,

then ≽(S,R)
∗ = ≽(S,R′)

∗ .
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AN is an impartiality requirement and strengthens Arrow’s non-dictatorship axiom.

Above we have stated our desiderata. Next, we will present the two conditions

in Arrow (1950, 1963) that restrict what information can be used in the evaluation.

The first condition is independence of irrelevant alternatives. We say that two binary

relations ≽ and ≽′ agree on some set of alternatives S if for any x, y ∈ △S, x ≽ y if

and only if x ≽′ y. Furthermore, we say that two preference profiles R,R′ ∈ Rn agree

on S if for each i ∈ N , ≽R
i and ≽R′

i agree on S.

Axiom IIA (Independence of Irrelevant Alternatives). Fix (S,R) ∈ Ω. For any

R′ ∈ Rn, if R and R′ agree on S, then ≽(S,R)
∗ = ≽(S,R′)

∗ .

IIA says that the planner’s evaluation of the menu cannot depend on individual

preferences over alternatives outside the menu. Hence, in a counterfactual world,

where individual preferences differ only on alternatives outside the menu, the planner’s

evaluation must be the same.

Arrow’s second condition is that social preferences are menu-independent. Arrow

assumes this implicitly, as he writes that the social choice from a menu S is made

based on a single preference relation over A, which is independent of the menu. In

light of the numerous ways to formalize this notion, we have selected the following

axiom, as it best aligns with our subsequent relaxation of the condition.

Axiom MI (Menu Independence). For each (S,R) ∈ Ω and S ′ ⊆ S, ≽(S,R)
∗ and ≽(S′,R)

∗

agree on S ′.

Menu independence says that removing alternatives from the menu does not change

the planner’s evaluation of the remaining alternatives.

It is well known that Arrow’s axioms lead to an impossibility. Unsurprisingly, as

our first three axioms strengthen Arrow’s rationality, benevolence and impartiality

requirements, the above axioms lead to an impossibility as well.3

Proposition 1. There is no aggregation rule ≽∗ that satisfies RA, SP, AN, IIA and

MI.
3Note that formally, we weaken Arrow’s universal domain condition, by assuming that individuals

have vNM preferences. However, it has been shown that such a domain restriction is insufficient for

escaping the impossibility. See Sen (1970), Kalai and Schmeidler (1977), Hylland (1980), Chichilnisky

(1985), and Dhillon and Mertens (1997).
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As we have argued in the introduction, we believe that both IIA and MI force the

social planner to ignore valuable context and should therefore be reconsidered. We

will weaken each of these conditions, using the following notion of comparability. Let

[a] denote the lottery that assigns probability 1 to the alternative a ∈ A.

Definition 1. a ∈ A is comparable relative to B ⊆ A under R ∈ Rn if (i) a /∈ B and

(ii) for every i ∈ N , there exists xi ∈ △B such that xi ∼R
i [a].

An alternative is comparable to a set if, for each individual, there is a pay-off in

the set equal to that of the alternative.

First, we weaken MI.

Axiom MICA (Menu Independence of Comparable Alternatives). For each (S,R) ∈

Ω and S ′ ⊆ S where every a ∈ S \ S ′ is comparable relative to S ′, ≽(S,R)
∗ and ≽(S′,R)

∗

agree on S ′.

MICA says that removing comparable alternatives from the menu does not change

the planner’s evaluation of the remaining alternatives.

Weakening MI to MICA results in a representation of the planner’s evaluation we

refer to as menu-contingent utilitarianism. For any R ∈ Rn and B ⊆ A, let uB,R
i

denote the representation of ≽R
i where maxa∈B u

B,R
i (a) = 1 and mina∈B u

B,R
i (a) = 0,

unless ≽R
i is indifferent on B in which case uB,R

i (a) = 0 for all a ∈ B.4 Furthermore,

for any B ⊆ A we denote by |B| the number of elements in B.

Theorem 1 (Menu-Contingent Utilitarianism). Let |A| ≥ 2n + 4. An aggregation

rule ≽∗ satisfies RA, SP, AN, IIA and MICA if and only if for each (S,R) ∈ Ω, ≽(S,R)
∗

is represented by ∑
i∈N

uS,Ri . (1)

We sketch the proof of Theorem 1 in Section 3. A complete proof can be found in

Appendix A. Note that no axiom of Theorem 1 is implied by the other axioms of the

theorem. Hence, a subset of the axioms would not suffice for the representation. We

prove this in Appendix C.

Next, we weaken IIA. For any B ⊂ A we write Bc to denote A \B.

4For any binary relation ≽ on a set X, a utility function u : X → R is said to represent ≽ if for

all x, y ∈ X, u(x) ≥ u(y) if and only if x ≽ y.
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Axiom IICA (Independence of Irrelevant Comparable Alternatives). Fix (S,R) ∈ Ω

and C ⊆ Sc such that every a ∈ C is comparable relative to Cc under R. For any

R′ ∈ Rn, if R and R′ agree on Cc and every a ∈ C is comparable relative to Cc under

R′, then ≽(S,R′)
∗ = ≽(S,R)

∗ .

IICA says that the planner’s evaluation of the menu cannot depend on individual

preferences over comparable alternatives outside the menu. Hence, in a counterfactual

world, where individual preferences over these alternatives are different in a way such

that these alternatives are still comparable, the planner’s evaluation must be the same.

Weakening IIA to IICA results in a representation we refer to as setting-contingent

utilitarianism.

Theorem 2 (Setting-Contingent Utilitarianism). Let |A| ≥ 2n + 4. An aggregation

rule ≽∗ satisfies RA, SP, AN, IICA and MI if and only if for each (S,R) ∈ Ω, ≽(S,R)
∗

is represented by ∑
i∈N

uA,R
i . (2)

We prove Theorem 2 in Appendix A. No axiom of Theorem 2 is implied by the

other axioms of the theorem, which we show in Appendix C.

In both theorems, we assume that there are at least 2n+4 possible alternatives. We

make this assumption, as it allows us to employ simple and insightful proofs. However,

as shown by the following proposition, our proofs require only a few more alternatives

than what is necessary for the axioms to be sufficient.

Proposition 2. Let |A| < 2n+1. There exists an aggregation rule ≽∗ which satisfies

RA, SP, AN, IIA and MICA and which is not represented by (1). Similarly, there

exists an aggregation rule ≽∗ which satisfies RA, SP, AN, IICA and MI and which is

not represented by (2).

We prove Proposition 2 in Appendix A.

Finally, we want to mention neutrality, an additional desideratum that is satisfied

by both our representations. Neutrality says that the labels of alternatives play no role

in the planner’s evaluation. Hence, if the labels of a and b were interchanged and a was

preferred by the planner before, then b must be preferred afterward. We believe this

to be the most important impartiality requirement besides anonymity. If neutrality
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wasn’t implied by our other axioms, we would have imposed it directly. Since we

will refer to neutrality in the upcoming sections, a formal definition is in order. We

say that π : A 7→ A is a permutation of A if π is bijective and denote by Π the set

of permutations of A. We abuse notation and define π(S) := {π(a) : a ∈ S ⊆ A}.

We write π(x) ∈ △A to denote the lottery that for every a ∈ A assigns probability

µ ∈ [0, 1] to π(a) if and only if x assigns probability µ to a. Let π(R) := (≽π(R)
i )i∈N ∈

Rn denote the preference profile which has the same preferences on the permuted

alternatives as R on the original alternatives. Formally, π(x) ≽π(R)
i π(y) if and only if

x ≽R
i y for all i ∈ N and x, y ∈ △A.

Axiom NE (Neutrality). For each (S,R) ∈ Ω, x, y ∈ △S and π ∈ Π, x ≽(S,R)
∗ y if

and only if π(x) ≽(π(S),π(R))
∗ π(y).

2.1 Discussion

Our objective was not to identify the weakest set of axioms leading to either of the

above representations. Instead, we wanted to demonstrate that even with minor mod-

ifications to Arrow’s axioms, preference aggregation becomes possible. To make this

point convincingly, it is crucial that our axioms are as strong as they can be. That

being said, whether weaker axioms would suffice remains an important question. This

holds especially true in view of the existing literature that weakens IIA to indepen-

dence of redundant alternatives (IRA); see Dhillon and Mertens (1999) and Brandl

(2021). A redundant alternative is one for which there is a lottery over the remain-

ing alternatives that leaves every individual indifferent between the two. While any

redundant alternative is comparable, the converse does not hold. Consequently, IRA

is weaker than IICA. We show in Appendix D that weakening IICA to IRA would

not suffice for our representation. Similarly, weakening MICA to menu independence

of redundant alternatives (MIRA) wouldn’t suffice either. However, in another aspect

IICA is indeed stronger than necessary. It would suffice if IICA only applied to cases

where all alternatives outside the menu are comparable (i.e., C = Sc), akin to the

formulation of IRA. We opted for the stronger version of the axiom as it more closely

aligns with Arrow’s IIA.
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3 Sketch of Proof

To highlight some insights, this section provides a sketch of the proof. Since the proofs

of both theorems are quite similar, we only sketch the proof of Theorem 1.

Before we prove the theorem, we derive two interim results. Note that SP implies

Pareto indifference (PI), which says that if every individual in society is indifferent

between two lotteries, then so is the social planner. The first interim result states that

if both RA and PI are satisfied, then the utility function of the social planner can

be expressed as a weighted sum of the individual utility functions. This result is well

known and has first been postulated by Harsanyi (1955). However, Harsanyi’s original

proof contains a mistake, which led to a variety of proofs by the subsequent literature.

We, in turn, provide our own proof of Harsanyi’s theorem, similar to those by Border

(1985), Selinger (1986), and Hammond (1992), albeit ours is self-contained as we do

not refer to mathematical theorems. Our proof makes use of the pay-off matrix, which

indicates for each individual the vNM utility of every alternative in the menu.5 Figure

3 shows an example for three individuals and four alternatives. By RA, the planner’s



a b c d

1 1 1 1

i=1 .5 .5 0 1

i=2 1 0 .7 .3

i=3 0 1 .2 .8


Figure 3: Pay-off matrix.

evaluation can be represented by a row vector of vNM utilities as well. What needs

to be shown is that whenever PI is satisfied, the planner’s utility vector is equal to

some linear combination of the rows in the pay-off matrix. If individual preferences

are sufficiently diverse, such that the rows of the pay-off matrix span the entire vector

space, then any logically possible vNM preference over the menu can be expressed by a

linear combination of the individual utility functions. If individual preferences are not

sufficiently diverse, we show that there exists a dependent alternative, whose column

5A row of 1’s is included in the pay-off matrix to allow for a constant in the representation.
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can be expressed by a linear combination of the other columns. For instance, in our

example Column d is equal to a plus b minus c. We then sequentially drop dependent

alternatives until the columns of the remaining alternatives are linearly independent.

Then individual preferences over the remaining alternatives are sufficiently diverse

such that any vNM preference over these alternatives can be expressed by a linear

combination of rows. For each of the dependent alternatives, we can identify two

lotteries, one of them involving the dependent alternative, such that every individual

is indifferent between them. In the case of alternative d, these lotteries would be

1
2
[a] + 1

2
[b] and 1

2
[c] + 1

2
[d]. By PI, also the planner must be indifferent between these

lotteries, and hence, the planner’s utility of the dependent alternative is pinned down

by the same linear combination as for the individuals.

For our second interim result, we introduce the concept of polar alternatives. An

alternative is polar if it is best among the menu for one individual and worst among

the menu for everyone else. If the menu consists only of polar alternatives, we call

such a state a polar state. Our second interim result then says that in a polar state,

the planner is indifferent between all alternatives. Consider, for instance, a polar state

as described by the pay-off matrix depicted on the left-hand side of Figure 4. Note



e f g

1 1 1

i=1 1 0 0

i=2 0 1 0

i=3 0 0 1


anonymity−−−−−⇀↽−−−−−
neutrality



e f g

1 1 1

i=1 0 1 0

i=2 1 0 0

i=3 0 0 1



Figure 4: Polar state.

that the pay-off matrix doesn’t describe the state completely, as it does not specify

individual preferences over infeasible alternatives. However, by IIA, preferences over

infeasible alternatives can be ignored. We assume that the planner weakly prefers e

over f and show that this implies a weak preference for f over e. This, of course,

only leaves indifference. First, notice that the pay-off matrix on the right-hand side of

Figure 4 depicts the state that results from permuting the labels of Individuals 1 and
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2 in the left-hand state. If e is weakly preferred to f in the left-hand state, by AN

this must be the case in the right-hand state as well. Second, notice that the left-hand

state results from permuting the labels of alternatives e and f in the right-hand state.

If e is weakly preferred to f in the right-hand state, NE would demand that f must

be weakly preferred to e in the left-hand state. With the help of MICA and PI, we

show that indeed NE is satisfied in polar states. We leave the details to the formal

proof in the appendix.

Finally, we prove the theorem. Consider individual preferences over the menu

{a, b, c, d} as depicted in Figure 3 and assume that for each individual, there is a

comparable polar alternative outside the menu, denoted by e, f , and g. In the menu

{e, f, g}, the planner must be totally indifferent as we have shown previously. Now we

add the original menu, resulting in Figure 5. Since we have only added comparable



a b c d e f g

1 1 1 1 1 1 1

i=1 .5 .5 0 1 1 0 0

i=2 1 0 .7 .3 0 1 0

i=3 0 1 .2 .8 0 0 1


Figure 5: Resulting pay-off matrix.

alternatives, by MICA, the planner must still be indifferent between e, f , and g. This

indifference, together with our first interim result, then implies that equal weights on

the individual utility functions represent the planner’s evaluation. SP ensures that

these common weights are positive and can be normalized to 1. Finally, we remove

the polar alternatives, and by MICA, the same linear combination must still represent

the planner’s evaluation. By IIA, this must hold even if there are no comparable polar

alternatives outside the initial menu. Note that if there are fewer than n alternatives

outside the initial menu, the proof is more involved.
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4 Applications

We apply our aggregation rules to three classic economic situations: aggregating the

welfare of different consumers in a market, identifying the welfare of a dynamically

inconsistent decision maker, and finding a fair solution to a bargaining problem. The

literature has so far treated each of these problems in isolation. In the previous sec-

tions, we provided a unifying framework that aggregates individual preferences consis-

tently across applications. With this methodology we uncover policy recommendations

contrary to those by the established welfare criteria.

4.1 Consumer Welfare

Consider a society with n individuals and two consumption goods, m and g, where m

is the numéraire. A social alternative is an allocation of these goods to the individuals

in society, hence an element of R2n
+ . Individuals are self-interested and their utility is

quasi-linear, formally for each i ∈ N ,

ui((m1, g1), ..., (mn, gn)) = αimi + vi(gi) (3)

for some vi : R+ → R and αi ∈ R+. The standard measure of aggregate welfare in this

setting is total consumer surplus, short TCS, given by

WTCS((m1, g1), ..., (mn, gn)) =
∑
i∈N

1

αi

ui((m1, g1), ..., (mn, gn))

=
∑
i∈N

mi +
∑
i∈N

vi(gi)

αi

.

Consider two allocations, a and b, such that some individuals strictly prefer a and

some strictly prefer b. If WTCS(a) is higher than WTCS(b), then there exist monetary

transfers after a, resulting in an allocation a′, such that a′ Pareto dominates b. This

makes TCS quite appealing. However, if these transfers aren’t implemented, TCS

makes a judgment on how the well-being of different individuals should be traded

off. We show that the way in which these trade-offs are made violates neutrality.

Specifically, TCS is sensitive to which of the two consumption goods is selected as

the numéraire. Let RQL be the subset of Rn such that individual preferences can be

represented by quasi-linear utility functions as in (3).
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Proposition 3. There doesn’t exist an aggregation rule ≽∗ on the restricted domain

RQL that is represented by WTCS and satisfies NE.

Proof. It is sufficient to show that the axiom is violated in some state, so consider a

state R ∈ RQL where for each i ∈ N , vi(gi) = βigi for some βi > 0. Next consider the

permutation π of alternatives such that π((m1, g1), ..., (mn, gn)) = ((g1,m1), ..., (gn,mn))

and note that π(R) ∈ RQL. For NE to be satisfied, it must hold that

WR
TCS(a) ≥ WR

TCS(b) if and only if W
π(R)
TCS (π(a)) ≥ W

π(R)
TCS (π(b)). (4)

Let a = ((0, 1), (0, 0), ..., (0, 0)) and b = ((0, 0), (2, 0), ..., (0, 0)). Then WR
TCS(a) =

β1

α1
,

WR
TCS(b) = 2, W

π(R)
TCS (π(a)) = 1 and W

π(R)
TCS (π(b)) =

α2

β2
. This violates (4) for instance

when β1 = 3, α1 = 1, α2 = 2 and β2 = 1.

Now assume that allocations result from the following setting. A monopolist pro-

duces the good g at constant marginal cost c. Individuals can be divided into two

distinct groups: students s and adults a. Within each group, every individual has the

same preferences. The fraction of individuals belonging to Group J ∈ {s, a} is denoted

by γJ . Total demand of Group J is then DJ(p) := nγJ(v
′
i)
−1(pαi) where i ∈ J . We

assume that the monopolist can identify which group an individual belongs to and

hence can choose a price pair (ps, pa) ∈ [c,∞)2, where pJ denotes the price charged

to Group J . We denote by ψ(ps, pa) ∈ R2n
+ the allocation resulting from a price pair

(ps, pa). Let p∗J denote the monopoly price charged to Group J , let p∗ denote the

profit-maximizing price if price discrimination was prohibited, and assume

p∗a > p∗ > p∗s.

A policymaker can choose whether to allow or prohibit price discrimination, hence

S = {ψ(p∗s, p∗a), ψ(p∗, p∗)}. To guide this decision, the policymaker wants to assess

whether the prohibition of price discrimination benefits consumers. According to TCS,

aggregate welfare is given by

WTCS(ψ(ps, pa)) = CSs(ps) + CSa(pa)

where CSJ(p) :=
∫∞
p
DJ(p)dp. Since total consumer surplus violates neutrality, we

propose setting-contingent utilitarianism as an alternative. The setting puts natural
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bounds on the possible alternatives, namely A = {ψ(ps, pa) ∈ R2n
+ : (ps, pa) ∈ [c,∞)2}.

Setting-contingent utilitarianism, short SCU, is then given by

WSCU(ψ(ps, pa)) =
nγs

CSs(c)
CSs(ps) +

nγa
CSa(c)

CSa(pa).

We now compare these two welfare measures. To make things simple, we consider

the textbook case of linear demand. It is well known that when demand is linear, total

consumer surplus is higher under price discrimination if and only if one group isn’t

served under the uniform price. Our welfare measure, on the other hand, suggests that

price discrimination can be socially beneficial, even if both groups are served under

uniform pricing. We demonstrate this with the help of the following example. Figure 6

shows the demand and monopoly prices for Ds(p) = 2000− 50p, Da(p) = 7000− 100p,

and c = 0. If the firm is allowed to price discriminate, it will charge $20 to students and

D(p)

p

pa
*

ps
*

p*

Ds+Da

Da

Ds

Figure 6: Linear demand and monopoly prices.

$35 to adults, which yields a consumer surplus of CSs($20) = $10, 000 and CSa($20) =

$61, 250. If price discrimination were prohibited, the firm would charge $30 to both,

which yields a consumer surplus of CSs($30) = $2, 500 and CSa($30) = $80, 000.

Note that TCS is higher when price discrimination is prohibited. For both groups to

be better off under uniform pricing, adults would have to pay between $7, 500 and

$18, 750 to students. However, transfers are typically not implemented, which makes

students worse off under uniform pricing. Going from price discrimination to uniform

pricing, the normalized utility of students decreases from 0.25 to roughly 0.06, while

it increases for adults from 0.25 to roughly 0.33. If both groups consist of an equal
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number of individuals, then total utility is higher under price discrimination and is

therefore favored by SCU. In a sense, SCU penalizes adults through a lower weight

on their surplus in order to account for the missing transfers. Note that if transfers

would, in fact, be implemented, then SCU would agree with TCS since both satisfy SP.

Furthermore, SCU accounts for how many individuals are positively and negatively

affected by the policy, whereas TCS ignores the shares of individuals in each group.

If, for instance, the share of students was below roughly 0.29, then SCU would favor

the prohibition of price discrimination, as sufficiently many adults would be positively

affected by the policy. SCU values individuality and has a flavor similar to the majority

principle. Finally, note that SCU, unlike TCS, can be meaningfully applied even when

individual utilities are not quasi-linear.

4.2 Intertemporal Welfare

Consider a finitely lived decision maker (DM) who consumes a good in each period

up to period n. As in Laibson (1997), we assume the DM discounts consumption

quasi-hyperbolically, such that the utility of a consumption sequence (c1, ..., cn) ∈ Rn
+

experienced in period t is given by

ut(ct, ..., cn) = v(ct) + β
n∑

i=t+1

δi−tv(ci) (5)

for β, δ ∈ [0, 1] and some monotone per-period valuation v : R+ → R. If β <

1, the DM is dynamically inconsistent, meaning there exist sequences (c1, ..., cn),

(c1, ..., ct, c
′
t+1, ..., c

′
n) ∈ Rn

+ such that the DM in Period t strictly prefers (c1, ..., cn)

over (c1, ..., ct, c
′
t+1, ..., c

′
n), while in Period t + 1 her preference is reversed. It is as if

the DM consists of different selves, Self 1 to Self n, with conflicting interests. If we

want to assess which of these two sequences is better for the DM overall, we need a

welfare criterion that incorporates the perspective of each self. Two criteria are com-

mon in the literature, the Pareto criterion and long-run utility (O’Donoghue & Rabin,

1999) given by

WLRU(c1, ..., cn) :=
n∑

t=1

δt−1v(ci).

Before we discuss these criteria, let us first consider the case where β = 1, such

that the DM is dynamically consistent. It is conventional wisdom among economists
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that, in this case, there is no conflict between the selves, and the appropriate welfare

measure is the utility of Self 1. However, this view ignores the possibility that, even

though there is no conflict looking forward, there could be a conflict looking backward.

For instance, the DM might regret an earlier decision and prefer they had saved more

in the past while simultaneously agreeing with the earlier self on how much to save

today. To formalize this idea, let each self t have a vNM preference ≽t over △(Rn
+).

This means that Self t can compare sequences that differ in the consumption levels

before Period t. However, note that since one cannot affect one’s past, ≽t is only

partially revealed. Let RQH be the subset of Rn such that the revealed part of the

individual preference can be represented by quasi-hyperbolically discounted utility as

in (5). Formally, for any (≽1, ...,≽n) ∈ RQH , (c1, ..., cn) ∈ Rn
+ and t ∈ {1, ..., n},

preferences of Self t over lotteries that assign probability 1 on sequences starting with

(c1, ..., ct−1) can be represented by (5). Note that the selves are in conflict unless

≽i=≽j for all i, j ∈ {1, ..., n}. Hence, for all selves to agree, the DM would have to

value past consumption more than current consumption and value it more the further

it lies in the past. Since this doesn’t seem very plausible, we would expect backward-

looking disagreements to be common. Now that all selves have preferences over the

same domain, we can view these conflicting interests from the perspective of preference

aggregation. This enables us to demonstrate that taking Self 1’s utility as a measure

of total welfare whenever β = 1 violates our Pareto condition.

Proposition 4. Let ≽∗ be an aggregation rule on the restricted domain RQH , such

that ≽(S,R)
∗ =≽R

1 whenever β = 1. Then ≽∗ violates SP.

Proof. Note that it is sufficient to show that the axiom is violated in some state.

Consider the state where each self is past indifferent, meaning for any t ∈ {2, ..., n},

(c1, ..., cn), (c
′
1, ..., c

′
t−1, ct, ..., cn) ∈ Rn

+,

(c1, ..., cn) ∼t (c
′
1, ..., c

′
t−1, ct, ..., cn).

Now consider two sequences s = (c1, ..., cn) and s
′ = (c′1, c

′
2, c3..., cn) such that c1 > c′1

and v(c1) + δv(c2) = v(c′1) + δv(c′2). Then s ∼1 s
′, s′ ≻2 s and s ∼t s

′ for all t ≥ 3

and hence by SP s′ should give strictly higher total welfare than s. If, however, u1

measures total welfare of the DM, then s and s′ are equally desirable.
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Let us now return to the aforementioned welfare criteria. The Pareto principle

cannot compare every sequence in Rn
+; hence, is incomplete and violates RA. Long-run

utility is equal to u1 for β = 1, and therefore, as shown by Proposition 4, violates SP. As

an alternative to the established criteria, we propose menu-contingent utilitarianism.

We assume that the social planner can distribute an initial endowment of size 1 across

periods, hence S = {(c1, ..., cn) ∈ [0, 1]n :
∑n

1 ct ≤ 1}. Furthermore, in order to apply

our criterion, we have to make assumptions on individual preferences over histories.

Note that the same is true for the Pareto principle (see Goldman (1979)). As a

benchmark, we assume past indifference. Then, preferences over entire sequences are

represented by (5). Next, we have to normalize each self’s utility with respect to the

best and worst alternative in S. Without loss of generality, assume that v(0) = 0

and let ūt = maxs∈S ut(s) denote the optimal allocation from the perspective of Self t.

Then, total welfare of the DM according to menu-contingent utilitarianism is given by

WMCU(c1, ..., cn) :=
n∑

t=1

1

ūt
ut(ct, ..., cn) =

n∑
t=1

(
1

ūt
+ β

t−1∑
i=1

δi

ūt−i

)
︸ ︷︷ ︸

γt

v(ct).

In contrast to long-run utility, the weights γt on the per period valuation are increasing

in t. Hence, our criterion recommends an increasing consumption profile. This is

because future consumption has a positive externality on earlier selves in the form

of anticipatory utility, while later selves do not benefit from past consumption. Of

course, this is driven by our assumption of past indifference. We leave it to future

research to determine whether this assumption is plausible. Finally, note that MCU

can be applied even when the DM is not a quasi-hyperbolic discounter.

4.3 Bargaining

Consider n individuals who have the possibility to cooperate and create a surplus. In

order to generate this surplus, they must agree on an alternative to be implemented.

For instance, one could think of a buyer and seller bargaining over the price or a worker

and an employer negotiating a wage. If the group cannot reach an agreement, each

individual resorts to their respective outside options, which we call the disagreement

alternative and denote by a0. In the following exposition, we consider bargaining
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through the eyes of an arbitrator who, to facilitate cooperation, has to choose an

alternative for the group. Equivalently, one could phrase the selection as a consequence

of fairness postulates.

The literature on axiomatic bargaining suggests that the arbitrator adheres to the

following approach. The problem is first reformulated in terms of vectors of utilities,

and then a bargaining solution is applied. This reformulation is discussed in more

detail below. Here, we recall the bargaining approach. A bargaining problem (d, U)

specifies a set of utility vectors U ⊂ Rn, called the bargaining set, and a disagreement

point d = (d1, ..., dn) ∈ U . We assume that U is compact and denote by B the set of

all such bargaining problems. A bargaining solution f assigns to each (d, U) a subset

of U , hence f(d, U) ⊆ U . Two bargaining solutions are prominent in the literature:

the Nash bargaining solution (Nash, 1950), short Nash, and the Kalai-Smorodinsky

bargaining solution (Kalai & Smorodinsky, 1975), short KS. Note that both solutions

require the bargaining set to be convex. Denote by Bcon the subset of B for which U

is convex. Then Nash is given by

fNash(d, U) := argmax
(v1,...,vn)∈U

∏
i∈N

(vi − di)

for all (d, U) ∈ Bcon. Next, we define KS, which requires some additional notation.

For any (d, U) ∈ B, let Λ(d, U) := {(v1, ..., vn) ∈ U : vi ≥ di for all i ∈ N}. Hence,

Λ(d, U) is the set of utility vectors in U that weakly Pareto-dominate d. Furthermore,

let αi(d, U) denote i’s maximal utility among all points in Λ(d, U). Note that KS only

applies for n = 2. So fKS(d, U) is the intersection of the Pareto frontier of U and the

line connecting d and (α1(d, U), α2(d, U)) for all (d, U) ∈ Bcon.

We now investigate whether these bargaining solutions could be used by an arbi-

trator who first evaluates the different alternatives and then selects the best according

to this evaluation. Let A denote the set of alternatives and note that a0 ∈ A. Let U

denote the set of possible vNM utility functions over △A. A utility profile u ∈ Un

specifies for each individual a utility function over the possible alternatives. We say

that a bargaining problem (d, U) ∈ B is associated with a utility profile u ∈ Un (and

vice versa) if d = (u1(a0), ..., un(a0)) and U = {(u1(a), ..., un(a)) : a ∈ A}. To ensure

that any bargaining problem in B can be generated by some utility profile in Un, we re-

quire A to be sufficiently rich. In line with our motivating examples, the reader might
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think of A as the set of prices or wages, i.e., A = R+. We denote by ≽+ the arbitrator’s

aggregation rule, such that for every u ∈ Un, ≽u
+ is a binary relation over △A. Note

that we deviate from the aggregation rule as defined in Section 2 in two ways. We have

indicated this by the use of a different subscript. First, for notational convenience,

≽+ is a function of utility profiles rather than preference profiles. Second, ≽+ does

not depend on the menu because, as we will argue later, in a bargaining setting, the

menu is determined endogenously. Neither of these deviations is responsible for our

subsequent finding. Furthermore, in line with Section 2 we require the arbitrator to

evaluate lotteries over A. We don’t insist that randomization is feasible, but if it were

feasible, the arbitrator should be able to evaluate the resulting lotteries. Finally, we

connect the aggregation rule to a bargaining solution through the following definition.

Definition 2. ≽+ is consistent with f if for any (d, U) ∈ Bcon and associated u ∈ Un,

the following holds. For all x ∈ △A,

(u1(x), ..., un(x)) ∈ f(d, U) if and only if x ∈ {y ∈ △A : y ≽u
+ z for all z ∈ △A}.

The definition captures an implicit assumption of the bargaining approach, namely

that alternatives are selected solely based on their utility vectors. Hence, if some

lottery’s utility vector is chosen by the bargaining solution, this lottery must be among

the most preferred. Conversely, if a lottery is among the most preferred, its utility

vector must be chosen by the bargaining solution. We have restricted the definition

to convex bargaining sets as this is the domain of the prominent bargaining solutions.

We can now investigate whether a given bargain solution is consistent with cer-

tain desirable features of our aggregation rule. We find that neither Nash nor KS is

consistent with rationality. More generally, any bargaining rule that imposes ex-ante

symmetry is inconsistent with the vNM postulates. This is well known; see for instance

Diamond (1965), Harsanyi (1975), Broome (1984) or Machina (1989). Nevertheless,

we provide the following proposition for the sake of completeness.

Proposition 5. There doesn’t exist an aggregation rule ≽+ that satisfies RA and is

consistent with either fNash or fKS.

Proof. We prove the proposition for n = 2 as this is required for KS. The proof can

be easily extended to a general n. The proof strategy goes as follows. We assume
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that ≽+ is consistent with a bargaining solution f that satisfies Nash’s symmetry and

Pareto axiom. Symmetry says that in a symmetric bargaining problem, any element

of the bargaining solution must assign equal utility to all individuals. Note that both

Nash and KS satisfy symmetry. We then show that ≽+ must violate RA.

Consider the bargaining problem ((0, 0),S) where S is the unit simplex. As

((0, 0),S) is symmetric, f selects {(0.5, 0.5)}. See Figure 7 for an illustration. For any

Figure 7: Symmetric bargaining solution for ((0, 0),S).

u ∈ U2 associated with ((0, 0),S), there must exist two alternatives a1, a2 ∈ A that gen-

erate the extreme points of S, i.e., (u1(a1), u2(a1)) = (1, 0) and (u1(a2), u2(a2)) = (0, 1).

Now consider the coin-flip between a1 and a2, denoted by x := 1
2
[a1] +

1
2
[a2]. As

(u1(x), u2(x)) = (0.5, 0.5) ∈ f((0, 0),S), x must be among the most preferred elements

according to ≽u
+. Formally x ∈ {y ∈ △A : y ≽u

+ z for all z ∈ △A}. But neither a1

nor a2 are among the most preferred elements, as neither (1, 0) nor (0, 1) is selected

by f . Therefore,
1

2
[a1] +

1

2
[a2] ≻u

+ [a1], (6)

1

2
[a1] +

1

2
[a2] ≻u

+ [a2]. (7)

By the vNM independence axiom, (6) would imply [a2] ≻u
+ [a1] and (7) would imply

[a1] ≻u
+ [a2], a contradiction. Hence, the vNM independence axiom and consequently

RA must be violated.

We believe that the arbitrator should make the decision based on a rational eval-

uation of the alternatives. As this is not reconcilable with the prominent bargaining

solutions, we offer menu-contingent utilitarianism as an alternative. The menu arises

naturally in this setting. Because an individual would not agree to an alternative
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worse than a0, it is the set of alternatives that weakly Pareto-dominate a0. Formally,

given u ∈ Un the menu is S := {a ∈ A : ui(a) ≥ ui(a0) for all i ∈ N}. Note that

a bargaining problem (d, U) contains all relevant information for our rule to evalu-

ate the utility vectors in Λ(d, U). Hence, menu-contingent utilitarianism leads to a

well-defined bargaining solution, which we abbreviated by MCU and which is given by

fMCU(d, U) := argmax
(v1,...,vn)∈Λ(d,U)

∑
i∈N

vi − di
αi(d, U)− di

for all (d, U) ∈ B. MCU selects the utility vectors that are most preferred under a

menu-contingent utilitarian evaluation. Note that MCU does not require convexity

of the bargaining set. The same bargaining solution has been axiomatized before by

Pivato (2009) under the assumption of convexity of the bargaining set. A similar bar-

gaining solution has been axiomatized by Cao (1982) and Baris (2018), again assuming

convexity of the bargaining set. Their solution differs from ours, as they normalize

individual utilities with respect to each individual’s highest utility in U , whereas we

normalize with respect to each individual’s highest utility in Λ(d, U).

Like Nash and KS, MCU has a neat geometric interpretation, which we demonstrate

with the help of Figure 8. The disagreement point is the origin and the curve shows the

1
v1

1

v2

●
■
▲

Figure 8: Nash, KS and MCU.

Pareto frontier of bargaining set for u1(a) = 1− a and u2(a) = a
2
5 . KS (circle) is the

intersection of the Pareto frontier and the dashed 45◦ line, Nash (square) maximizes

the area of the rectangle spanned by d and the Pareto frontier and MCU (triangle)
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maximizes the circumference of the rectangle spanned by d and the Pareto frontier. If

the Pareto frontier is smooth, then the slope of the Pareto frontier at MCU is -1, as

it would otherwise be possible to increase the utility of one individual by decreasing

the utility of the other individual by a lesser amount. Hence, in this example, MCU

favors Individual 1 relative to KS because the slope at KS is flatter than -1 such that

Individual 1 can be made significantly better off at the cost of making Individual 2

slightly worse off.

5 Conclusion

We initiated this project in pursuit of a rule that is rational, benevolent, and impartial,

as these desiderata are not satisfied by the rules that are typically used in applications.

We learned from Arrow (1950, 1963) that for a rule to satisfy these desiderata, it must

be sensitive to context. We offer two rules, each motivated by adhering closely to

Arrow. Each rule results from slightly weakening one of Arrow’s two context-restricting

axioms, MI and IIA. Each rule makes an explicit normative judgment about what is

allowed to matter. We believe that in different situations, different considerations are

allowed to matter. Consequently, we find that there is no single unifying rule. This

revelation could pave the way for numerous rules derived from various modifications

of MI and IIA. However, if we permit a planner to tailor the context to a specific

application, almost any social choice can be justified. To maintain discipline, we

recommend selecting from our two rules, as each represents a normative judgment on

one side of the spectrum.

The menu-contingent utilitarian rule satisfies IIA and thus reflects the judgment

that nothing outside the menu is allowed to matter. However, the menu itself does

matter. We believe this normative consideration to be relevant for bargaining situa-

tions, as bargaining involves finding a compromise that provides each individual with

a fair share of the surplus. Our understanding of fairness is relative to what can be

achieved and must disregard alternatives that individuals would never agree upon. We

also propose this rule for practical convenience in situations where there is no infor-

mation about individual preferences outside the menu or when the setting does not

impose natural bounds on individual utilities.
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On the other side of the spectrum is the setting-contingent utilitarian rule. This

rule satisfies MI, hence reflects the judgment that the menu itself is not allowed to

matter. Individual preferences over all possible alternatives are taken into account,

independently of whether an alternative is currently feasible. We believe this norma-

tive consideration to be relevant for policymaking, where the policymaker should take

a birds-eye view and assess welfare on the basis of the entire setting. In addition, pol-

icymakers often face binary decisions sequentially, namely whether to adopt a specific

policy or not. Menu independence ensures that these decisions are consistent across

time.

Appendix A

This section contains the proofs of Theorem 1, Theorem 2, Proposition 2, and some

additional propositions and lemmas required for the proofs of the theorems.

First off, note that SP implies Pareto indifference.

Axiom PI (Pareto Indifference). For any (S,R) ∈ Ω and x, y ∈ △S, if x ∼R
i y for all

i ∈ N , then x ∼(S,R)
∗ y.

We use this axiom for our first interim result.

Proposition 6. Let RA and PI be satisfied. Then for any (S,R) ∈ Ω and for any

representations (ui)i∈N of R and u∗ of ≽(S,R)
∗ , there exists (λi)

n
i=0 ∈ Rn+1, such that

for all a ∈ S,

u∗(a) = λ0 +
∑
i∈N

λiui(a).

Proof. Fix (S,R) ∈ Ω. We denote the alternatives in S by a1 to am wherem = |S|. The

pay-off vector u⃗i := (ui(a1), ..., ui(am)) describes individual i′s vNM preferences over

S. By RA, the representation u∗ of ≽(S,R)
∗ must be an expected utility representation

and is therefore fully described by a pay-off vector as well. We denote this vector by
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u⃗∗ := (u∗(a1), ..., u∗(am)). Let

M :=


(1, ..., 1)

u⃗1
...

u⃗n


be the pay-off matrix, which describes individual preferences over S. Note that the

proposition states that u⃗∗ is equal to some linear combination of the rows in M . We

distinguish two cases. In the first case, individual preferences are sufficiently diverse,

such that there are m linearly independent rows in M , which span the entire m-fold

vector space. Hence, a linear combination of rows in M equal to u⃗∗ exists trivially,

even without invoking PI. Next, consider the case where individual preferences are not

sufficiently diverse, such that not every vector of length m can be expressed as a linear

combination of rows. In this case, the maximal number of linearly independent rows is

strictly belowm. Hence, the maximal number of linearly independent columns must be

strictly below m as well. AsM hasm columns, linearly dependent columns must exist.

Sequentially drop linearly dependent columns from M until all remaining columns are

linearly independent. Denote the set of alternatives associated with the remaining

columns by B. We call the alternatives in B the independent alternatives and the

alternatives in S \B the dependent alternatives. Note that in the resulting matrix, the

rows span the entirety of the reduced vector space. Hence, by dropping the dependent

alternatives, preferences are again sufficiently diverse to express any utility vector for

the independent alternatives. This means that we can find a linear combination of rows

of M that matches u⃗∗ in the utilities for the independent alternatives. Now consider

the dependent alternatives. For each a ∈ S \B, there must exist a linear combination

of columns γa : B → R such that∑
b∈B

γa(b)u⃗(b) = u⃗(a). (8)

We will now show that each γa can be decomposed into two lotteries γa+, γ
a
− ∈ △S such

that every individual is indifferent between these lotteries. Let Ba
+ := {b ∈ B : γa(b) ≥

0} and Ba
− := {b ∈ B : γa(b) < 0}. Since by definition the first row of M consists only

of 1’s,
∑

b∈B γ
a(b) = 1 and furthermore k :=

∑
b∈Ba

+
γa(b) = 1 −

∑
b∈Ba

−
γa(b). Now
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define two lotteries

γa+(b) :=


1
k
γa(b) b ∈ Ba

+

0 b /∈ Ba
+

and γa−(b) :=


− 1

k
γa(b) b ∈ Ba

−

1
k

b = a

0 b /∈ Ba
− ∪ {a}

Note that for each i ∈ N ,
∑

b∈S γ
a
+(b)ui(b) =

∑
b∈S γ

a
−(b)ui(b), meaning each individual

is indifferent between the two lotteries. By PI, the planner must be indifferent as well.

Therefore,
∑

b∈S γ
a
+(b)u∗(b) =

∑
b∈S γ

a
−(b)u∗(b) and furthermore∑

b∈B

γa(b)u∗(b) = u∗(a). (9)

Compare this to Equation (8). The planner’s utility for any dependent alternatives is

determined from the independent alternatives in the same way as for every individ-

ual. Therefore, if a linear combination of rows of M matches the planner’s utilities

for the independent alternatives, it must also match the utilities for the dependent

alternatives.

We say that a state (S,R) ∈ Ω is polar if (i) S has exactly n elements, which we

denote by p1 to pn, (ii) for every i ∈ N , pj ∼R
i pk for all j, k ∈ N \ {i} and (iii) either

pi ≻R
i pj for all j ∈ N \ {i} or pi ∼R

i pj for all j ∈ N \ {i}. We say that pi is i’s polar

alternative.

Proposition 7. Let RA, SP, AN, IIA and MICA be satisfied. Then for any polar

state (S,R) ∈ Ω, if i, j ∈ N have a strict preference on S, then pi ∼(S,R)
∗ pj.

Proof. Assume (S,R) ∈ Ω is polar and i, j ∈ N have strict preferences on S. If

i = j, the proposition is trivially satisfied, so assume i ̸= j. We assume pi ≽
(S,R)
∗ pj

and show that pj ≽(S,R)
∗ pi is implied, which only leaves pi ∼(S,R)

∗ pj. We prove the

proposition by going through a sequence of preference profiles and menus. We use

Roman numerals as subscripts to keep track of the different preference profiles and

menus. Let RI ∈ Rn denote the permutation of R where only preferences of i and j

are permuted. By AN, pi ≽
(S,RI)
∗ pj. Let RII ∈ Rn denote a preference profile, which

agrees with RI on S and where there is qi, qj ∈ Sc such that qi ∼RII
k pi and qj ∼RII

k pj for

all k ∈ N . By our assumption that A has at least 2n + 4 elements, such alternatives
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must exist. By IIA, pi ≽(S,RII)
∗ pj. Let SI := S ∪ {qi, qj}. Then pi ≽(SI,RII)

∗ pj by

MICA. Furthermore, pi ∼(SI,RII)
∗ qi and pj ∼(SI,RII)

∗ qj by SP and hence qi ≽
(SI,RII)
∗ qj

by RA. Let SII := SI \ {pi, pj}. Then qi ≽
(SII,RII)
∗ qj by MICA. Let RIII ∈ Rn denote

a preference profile which agrees with RII on SII and where qi ∼RIII
k pj and qj ∼RIII

k pi

for all k ∈ N . Then qi ≽
(SII,RIII)
∗ qj by IIA, qi ≽

(SI,RIII)
∗ qj by MICA and pj ≽

(SI,RIII)
∗ pi

by SP and RA. Furthermore, pj ≽
(S,RIII)
∗ pi by MICA. Note that RIII and R agree on

S. Therefore, pj ≽
(S,R)
∗ pi by IIA, which implies pi ∼(S,R)

∗ pj.

We now show two properties of binary relations that we will need for the proofs of

the theorems.

Lemma 1. Let ≽, ≽′ and ≽′′ be binary relations over △S. If ≽ and ≽′ agree on

B ⊆ S and ≽′ and ≽′′ agree on C ⊆ S, then ≽ and ≽′′ agree on B ∩ C.

Proof. Consider any B,C ⊆ S s.t. B ∩ C ̸= ∅ and any x, y ∈ △(B ∩ C). If ≽ and ≽′

agree on B, then x ≽ y if and only if x ≽′ y, and if ≽′ and ≽′′ agree on C, then x ≽′ y

if and only if x ≽′′ y. Hence, for any x, y ∈ △(B ∩ C), x ≽ y if and only if x ≽′′ y,

meaning ≽ and ≽′′ agree on B ∩ C.

Lemma 2. Let ≽ be a binary relation over △S satisfying RA. For any u : S → R, if

for each distinct b, c, d ∈ S the part of ≽ on △{b, c, d} is represented by u, then ≽ is

represented by u.

Proof. Let u satisfy the premise above. Select b, c, d ∈ S such that b ≻ c. If this is not

possible, then ≽ must be totally indifferent on S, in which case the proof is trivial.

By assumption, u represents ≽ on △{b, c, d}. Let û : S → R denote a representation

of ≽ where û(a) = u(a) for all a ∈ {b, c, d}. Now consider any e ∈ S \ {b, c, d}. By

assumption, both u and û represent ≽ on △{b, c, e}. Since vNM representations are

unique up to a positive affine transformation, there must exist α ∈ R+ and β ∈ R

such that u(a) = αû(a) + β for all a ∈ {b, c, e}. As û(b) = u(b) and û(c) = u(c), we

find that (1 − α)u(b) = (1 − α)u(c) which further implies α = 1 and β = 0. Hence,

û(e) = u(e). As this holds true for any e ∈ S \ {b, c, d}, we find that û = u and hence

u represents ≽.
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Proof of Theorem 1

Let RA, SP, AN, IIA and MICA be satisfied and assume that |A| ≥ 2n + 4. We will

prove that for each (S,R) ∈ Ω, ≽(S,R)
∗ is represented by∑

i∈N

uS,Ri .

Fix (S,R) ∈ Ω where |S| ≥ 3. Later, we consider the case |S| = 2. We will show that

for any distinct b, c, d ∈ S, the part of ≽(S,R)
∗ on △{b, c, d} is represented by

∑
i∈N u

S,R
i .

It then follows from Lemma 2 that ≽(S,R)
∗ is represented by

∑
i∈N u

S,R
i . The proof is

done in three steps. First, we define a sequence of states, connecting (S,R) to a polar

state. Second, we show that in the final state of that sequence, social preferences on

△{b, c, d} are represented by
∑

i∈N u
S,R
i . Third, we show that social preferences in the

final state agree with the social preferences in the initial state on {b, c, d}.

We begin by defining the aforementioned sequence of states. We use Roman nu-

merals as subscripts to keep track of the different preference profiles and menus. If

S ̸= A, then define SI := S and denote an arbitrary alternative in Sc by e. If, on

the other hand, S = A, we construct SI in the following way. As |A| ≥ 2n + 4,

S \ {b, c, d} must have at least 2n + 1 alternatives. Consequently, at least one al-

ternative e ∈ S \ {b, c, d} must be comparable relative to S \ {e} under R. So let

SI := S \ {e}. Note that either way, there is an alternative e in Sc
I . Let RI ∈ Rn

denote a preference profile that agrees with R on SI and where for each i ∈ N , e ∼RI
i a

for all a ∈ {a ∈ SI : a ≽RI
i a′ for all a′ ∈ SI}. Let SII := SI ∪ {e}. Next, iden-

tify the smallest subset SIII ⊆ SII with the property that {b, c, d, e} ⊆ SIII and every

a ∈ SII \SIII is comparable relative to SIII under RI. Note that there are at most n+4

alternatives in SIII, namely b, c, d, e, and n alternatives that are each worst for exactly

one individual. Hence, as |A| ≥ 2n + 4, there are at least n alternatives in Sc
III. For

any state ω ∈ Ω, we denote the set of individuals that are not totally indifferent on

the menu by Nω
≻. Let RII ∈ Rn denote a preference profile that agrees with RI on SIII

and where there exists P ⊆ Sc
III such that (i) (P,RII) is polar, where pi ∈ P denotes i’s

polar alternative, (ii) for each i ∈ N , i ∈ N
(P,RII)
≻ if and only if i ∈ N

(SIII,RII)
≻ and (iii)

for each i ∈ N , pi ∼RII
i a for all a ∈ {a ∈ SIII : a ≽RII

i a′ for all a′ ∈ SIII} and pj ∼RII
i a

for all a ∈ {a ∈ SIII : a
′ ≽RII

i a for all a′ ∈ SIII} and j ∈ N \ {i}. This concludes the

construction of the sequence of states.
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Next, we show that the part of≽(P∪SIII,RII)
∗ on△{b, c, d} is represented by

∑
i∈N u

S,R
i .

By Proposition 6, there exists weights (λi)
n
i=0 ∈ Rn+1 such that ≽(P∪SIII,RII)

∗ is repre-

sented by

λ0 +
∑
i∈N

λiu
P∪SIII,RII
i .

By Proposition 7, pi ∼(P,RII)
∗ pj for all i, j ∈ N

(P,RII)
≻ . Because every alternative in

SIII is comparable relative to P under RII, by MICA pi ∼(P∪SIII,RII)
∗ pj for all i, j ∈

N
(P∪SIII,RII)
≻ as well. This implies λi = λj =: λ for all i, j ∈ N

(P∪SIII,RII)
≻ . Note that if

i /∈ N
(P∪SIII,RII)
≻ , then uP∪SIII,RII

i is constant on P ∪ SIII, and λi can be normalized to

λ as the planner’s vNM representation is unique up to positive affine transformations.

Similarly, λ0 can be normalized to 0. We now show that λ > 0 and, therefore, λ

can be normalized to 1. We distinguish three cases. First, consider the case where

N
(P∪SIII,RII)
≻ = N and for any alternative a ∈ SIII there exists a lottery xa ∈ △P such

that a ∼RII
i xa for all i ∈ N . Then ≽(P∪SIII,RII)

∗ is totally indifferent on P ∪SIII and any

λ represents the same preferences. Second, consider the case where N
(P∪SIII,RII)
≻ = N

and for some alternative a ∈ S such a lottery does not exist. Depending on whether∑n
i=1 u

SIII,RII
i (a) is greater or smaller than 1, one can construct a lottery over P that

either Pareto dominates a or is Pareto dominated by a. Then for SP to be satisfied,

λ has to be strictly positive. Third, if N
(P∪SIII,RII)
≻ ̸= N then for SP to be satisfied,

pi ≻(P∪SIII,RII)
∗ pj for any i ∈ N

(P∪SIII,RII)
≻ and j /∈ N

(P∪SIII,RII)
≻ . This requires λ to be

strictly positive as well. In any of the three cases, λ can be normalized to 1. Hence,

we have shown that ≽(P∪SIII,RII)
∗ is represented by∑

i∈N

uP∪SIII,RII
i .

Finally, note that we have constructed (P ∪SIII, RII) in such a way that for each i ∈ N ,

uP∪SIII,RII
i (a) = uS,Ri (a) for all a ∈ {b, c, d}. Hence, we have shown that the part of

≽(P∪SIII,RII)
∗ on △{b, c, d} is indeed represented by

∑
i∈N u

S,R
i .
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In the third and final step, we show that ≽(P∪SIII,RII)
∗ and ≽(S,R)

∗ agree on {b, c, d}.

≽(S,R)
∗ and ≽(SI,R)

∗ agree on {b, c, d}. (MICA)

≽(SI,R)
∗ and ≽(SI,RI)

∗ agree on {b, c, d}. (IIA)

≽(SI,RI)
∗ and ≽(SII,RI)

∗ agree on {b, c, d}. (MICA)

≽(SII,RI)
∗ and ≽(SIII,RI)

∗ agree on {b, c, d}. (MICA)

≽(SIII,RI)
∗ and ≽(SIII,RII)

∗ agree on {b, c, d}. (IIA)

≽(SIII,RII)
∗ and ≽(P∪SIII,RII)

∗ agree on {b, c, d}. (MICA)

Hence, by Lemma 1 ≽(P∪SIII,RII)
∗ and ≽(S,R)

∗ agree on {b, c, d}. This concludes the proof

for |S| ≥ 3.

Now consider |S| = 2. There must at least be 2n+2 alternatives in Sc. We consider

a different profile RI where there is a set of polar alternatives P outside of S. Then

≽(P∪S,RI)
∗ must be represented by equal weights by the above argument. By MICA,

≽(S,RI)
∗ must be represented by equal weights and by IIA ≽(S,R)

∗ must be represented

by equal weights. This concludes the proof of Theorem 1.

Next, we derive an interim result required for the proof of Theorem 2.

Proposition 8. Let RA, SP, AN, MI, and IICA be satisfied. Then for any polar

(S,R) ∈ Ω, if every a ∈ Sc is comparable relative to S under R and i, j ∈ N have a

strict preference on S, then pi ∼(S,R)
∗ pj.

The proof is nearly identical to the proof of Proposition 7, with the only difference

that IICA is used instead of IIA. This is possible as Proposition 8 is restricted to polar

states where all alternatives outside are comparable.

Proof of Theorem 2

Let RA, SP, AN, IICA and MI be satisfied and assume that |A| ≥ 2n + 4. We show

that for each (S,R) ∈ Ω, ≽(S,R)
∗ is represented by∑

i∈N

uA,R
i .

Note that it suffices to show that this holds for S = A, as by MI the same representa-

tion must hold for any S ⊂ A. Furthermore, note that for S = A, the representations
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of both theorems coincide. Hence, we follow the proof of Theorem 1, with the caveat

that RII is selected such that every alternative in (P ∪ SIII)
c is comparable relative

to (P ∪ SIII) under RII. Then one can simply replace the use of Proposition 7 with

Proposition 8 and the use of IIA with IICA for the proof to go through. This concludes

the proof of Theorem 2.

Proof of Proposition 2

We prove the proposition by providing a counterexample. Specifically, we identify

an aggregation rule that satisfies the axioms but is not represented by the normal-

ized sum of individual utilities across all states. We begin with a counterexample

for the representation of Theorem 1. Assume that RA, SP, AN, IIA and MICA

are satisfied. Fix a state (A, R̂) ∈ Ω where no alternative is comparable relative

to the remaining alternatives under R̂. As |A| < 2n + 1, such a state must ex-

ist. Let π(R̂) denote the set containing all permutations of R̂ and R̂ itself and let

Ω̂ := {(S,R) ∈ Ω : S = A,R ∈ π(R̂)}. Now consider an aggregation rule where ≽(S,R)
∗

is represented by ∑
i∈N

(∑
a∈S

uS,Ri (a)

)
uS,Ri (10)

whenever (S,R) ∈ Ω̂ and by ∑
i∈N

uS,Ri (11)

whenever (S,R) /∈ Ω̂. Note that it could be that for all (S,R) ∈ Ω̂, (10) and (11)

are positive affine transformations of each other. So assume that (A, R̂) has been

selected such that this is not the case, which is possible by the richness of Ω. If this

aggregation rule indeed satisfies our axioms, we have produced a counterexample. Note

that AN, MICA and IIA connect states, meaning they impose restrictions between

states, whereas RA and SP impose restrictions on each state separately. So to prove

that no axiom is violated, we will show that (i) no axiom connects a state in Ω̂ to a state

outside of Ω̂, (ii) (10) satisfies the restrictions imposed between any two states in Ω̂,

and (iii) (10) satisfies RA and SP for each (S,R) ∈ Ω̂. First, Ω̂ has been constructed

such that AN doesn’t connect any state in Ω̂ to a state outside of Ω̂. IIA doesn’t

connect any state in Ω̂ to another state, as there are no alternatives outside the menu.
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MICA doesn’t connect any state in Ω̂ to another state, as no alternative is comparable

relative to the other alternatives in A under any R ∈ π(R̂). Second, (10) satisfies AN

as the weight on each utility function only depends on the utility function itself but

not on the index. Third, (10) assigns positive weights to all individual utility functions

that are not indifferent on A. Hence, RA and SP are satisfied for each (S,R) ∈ Ω̂.

This concludes the proof of Proposition 2 in case of Theorem 1.

Next, we provide a counterexample for the representation of Theorem 2. Let Ω̂ be

defined as above. Now consider an aggregation rule where ≽(S,R)
∗ is represented by

∑
i∈N

(∑
a∈S

uA,R
i (a)

)
uA,R
i (12)

whenever (S,R) ∈ Ω̂ and by ∑
i∈N

uA,R
i (13)

whenever (S,R) /∈ Ω̂. As before, assume that (A, R̂) has been selected such that (12)

and (13) are not positive affine transformations of each other. Note that both MI and

IICA connect states. As before, it holds that (i) no axiom connects a state in Ω̂ to a

state outside of Ω̂, (ii) (12) satisfies the restrictions imposed between any two states

in Ω̂, and (iii) (12) satisfies RA and SP for each (S,R) ∈ Ω̂. This can be shown,

similarly to how it was shown for Theorem 1 above. Just note that IICA doesn’t

connect any state in Ω̂ to another state, as no alternative is comparable relative to the

other alternatives in A under any R ∈ π(R̂). This concludes the proof of Proposition

2 in the case of Theorem 2.

Appendix B

In this section, we consider the case where A is either countably or uncountable infi-

nite. This requires us to make some adjustments to the framework and the axioms.

First, individual utilities might not be bounded, in which case they cannot be nor-

malized as in the representations of Theorems 1 and 2. We deal with this by in-

troducing a domain restriction, namely we only impose axioms on states where each

individual has a best and worst alternative in A. Formally, we define Ω to be the

set of states, such that for each (S,R) ∈ Ω, both
{
a ∈ A : a ≽R

i b for all b ∈ A
}
and
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{
a ∈ A : b ≽R

i a for all b ∈ A
}
are non-empty for all i ∈ N . Second, even if individual

preferences have a best and worst alternative in A, they might not have one for S ⊂ A.

For example, if A = [0, 1] and uRi (a) = a for some R ∈ Rn and i ∈ N , then ≽R
i does

not have a best alternative in S = [0, 1). The non-existence of a best or worst alter-

native for an individual in a given menu means that we cannot construct the specific

polar state required for the proof of Theorem 1. Therein, every alternative in the menu

must be comparable relative to the set of polar alternatives and every polar alternative

must be comparable relative to the menu. For the proof to go through, we introduce

a weaker notation of comparability.

Definition 3. a ∈ A is approximately comparable relative to B ⊆ A under R ∈ Rn if

a /∈ B and for every i ∈ N and ε ∈ (0, 1) there exists xi,ε, yi,ε ∈ △B such that

(1− ε)[a] + εxi,ε ∼R
i yi,ε.

Note that if a is comparable relative to B under R, then a is approximately compa-

rable relative to B under R. If A is finite, the two concepts coincide. Furthermore, if a

is approximately comparable, its utility must lie between the supremum and infimum

utility in the set for every individual, as shown by the following lemma.

Lemma 3. For any R ∈ Rn and B ⊆ A, if a /∈ B and for any utility profile (uRi )i∈N

of R,

sup
b∈B

uRi (b) ≥ uRi (a) ≥ inf
b∈B

uRi (b)

for all i ∈ N then a is approximately comparable relative to B under R.

Proof. Fix (uRi )i∈N . Note that a ∈ A is approximately comparable relative to B ⊆ A

under R ∈ Rn if and only if for every i ∈ N and ε ∈ (0, 1) there exists xi,ε, yi,ε ∈ △B

such that

(1− ε)uRi (a) + εuRi (xi,ε) = uRi (yi,ε). (14)

If uRi (a) is strictly between supb∈B u
R
i (b) and infb∈B u

R
i (b), one can simply select a zi ∈

△B such that uRi (zi) = uRi (a) and then set xi,ε = yi,ε = zi. Then (14) is satisfied for

all ε. So assume uRi (a) = supb∈B u
R
i (b) and fix ε. Choose xi,ε arbitrarily. The left-hand

side of (14) is strictly between supb∈B u
R
i (b) and infb∈B u

R
i (b), and hence there must be a

yi,ε ∈ △B to satisfy (14). The same argument applies when uRi (a) = infb∈B u
R
i (b).
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In MICA, comparability is then replaced by approximate comparability.

Axiom MICA*. For each (S,R) ∈ Ω and S ′ ⊆ S where every a ∈ S \ S ′ is approxi-

mately comparable relative to S ′, ≽(S,R)
∗ and ≽(S′,R)

∗ agree on S ′.

With these adjustments, we can now state the equivalent of Theorem 1 when A is

infinite. For any R ∈ Rn and B ⊆ A, let ûB,R
i denote the representation of ≽R

i where

supa∈B û
B,R
i (a) = 1 and infa∈B u

B,R
i (a) = 0, unless ≽R

i is indifferent on B in which case

ûB,R
i (a) = 0 for all a ∈ B.

Theorem 3. Let A be infinite. An aggregation rule ≽∗ satisfies RA, SP, AN, IIA and

MICA* if and only if for each (S,R) ∈ Ω, ≽(S,R)
∗ is represented by∑

i∈N

ûS,Ri .

Proof. First off, note that the proofs of Proposition 7, Lemma 1 and Lemma 2 go

through when there are infinitely many possible alternatives. For a proof of Proposition

6 under infinite A we refer to Mandler (2005). Now consider the proof of Theorem 1.

When constructing the sequence of states, specifically RI and RII, there might not be

a best or worst alternative in the menu for some individuals. We make the following

adjustments to the proof. Let RI ∈ Rn denote a preference profile that agrees with R

on SI and where there is an e ∈ Sc
I such that for each i ∈ N and any uRI

i representing

≽RI
i , uRI

i (e) = supa∈SI
uRI
i (a). Let RII ∈ Rn denote a preference profile that agrees with

RI on SIII and where there exists P ⊆ Sc
III such that (i) (P,RII) is polar, where pi ∈ P

denotes i’s polar alternative, (ii) for each i ∈ N , i ∈ N
(P,RII)
≻ if and only if i ∈ N

(SIII,RII)
≻

and (iii) for each i ∈ N and any uRII
i representing ≽RII

i , uRII
i (pi) = supa∈SIII

uRII
i (a) and

uRII
i (pj) = infa∈SIII

uRII
i (a) for all j ∈ N \ {i}. By Lemma 3, e is approximately

comparable to SI under RI and every alternative in P is approximately comparable

relative to SIII under RII. Then the proof of Theorem 1 goes through.

Theorem 2 holds without adjustment to the axioms.

Appendix C

In this section, we show that none of the axioms can be dispensed with. We do so

by separately dropping each axiom and then identifying a representation that satisfies
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the remaining axioms, different from the representation of the respective theorem.

When SP is dropped in either theorem, total indifference of the planner satisfies

the remaining axioms. Formally, for each (S,R) ∈ Ω and x ∈ △S, u(S,R)
∗ (x) = 0.

When AN is dropped in Theorem 1, any weighted sum of individual utilities satisfies

the remaining axioms as long as the weights are strictly positive. Formally, there exists

(λi)i∈N ∈ Rn
+ such that for each (S,R) ∈ Ω, u

(S,R)
∗ (x) =

∑n
i=1 λiu

S,R
i (x). Similarly,

when AN is dropped in Theorem 2, u
(S,R)
∗ (x) =

∑n
i=1 λiu

A,R
i (x) satisfies the remaining

axioms. If RA is dropped in either theorem, then the relative egalitarian rule by

Sprumont (2013) satisfies the remaining axioms. The rule ranks alternatives according

to the lowest normalized individual utility it generates. If two alternatives generate

the same lowest utility, they are further ranked by the second lowest utility, and so

on. Depending on the theorem for which we want to provide the counterexample,

individual utilities are normalized either with respect to S or A. When IIA is dropped

in Theorem 1, then the representation of Theorem 2 satisfies the remaining axioms.

Similarly, when MI is dropped in Theorem 2, the then representation of Theorem 1

satisfies the remaining axioms. For a representation when either MICA is dropped

in Theorem 1 or IICA is dropped in Theorem 2 we refer to Propositions 9 and 10 in

Appendix D.

Appendix D

In this section we consider weaker versions of our context-defining axioms MICA and

IICA. The following notion of redundant alternatives has been considered by the lit-

erature.

Definition 4. a ∈ A is redundant relative to B ⊆ A under R ∈ Rn if a /∈ B and there

exists x ∈ △B such that x ∼R
i [a] for all i ∈ N .

Given this definition, we can state the central axiom of Dhillon and Mertens (1999).

Note that we adapted the axiom to our setting where the menu is explicit.

Axiom IRA (Independence of Redundant Alternatives). Fix (S,R) ∈ Ω such that

every a ∈ Sc is redundant relative to S under R. For any R′ ∈ Rn, if R and R′ agree

on S and every a ∈ Sc is redundant relative to S under R′, then ≽(S,R′)
∗ =≽(S,R)

∗ .
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Note that IRA differs from IICA in two ways. First, the independence applies

to redundant rather than comparable alternatives. Second, IRA applies only if all

alternatives outside the menu are redundant, whereas IICA applies when only some

alternatives outside the menu are comparable as well. In order to disentangle these

difference, we define two intermediate axioms.

Axiom IICA*. Fix (S,R) ∈ Ω such that every a ∈ Sc is comparable relative to S

under R. For any R′ ∈ Rn, if R and R′ agree on S and every a ∈ Sc is comparable

relative to S under R′, then ≽(S,R′)
∗ =≽(S,R)

∗ .

Axiom IIRA (Independence of Irrelevant Redundant Alternatives). Fix (S,R) ∈ Ω

and C ⊆ Sc such that every a ∈ C is redundant relative to Cc under R. For any

R′ ∈ Rn, if R and R′ agree on Cc and every a ∈ C is redundant relative to Cc under

R′, then ≽(S,R′)
∗ =≽(S,R)

∗ .

It is easy to see that IICA* would suffice in Theorem 2, since whenever IICA is

used in the proof, all alternatives outside the menu are comparable. However, replac-

ing IICA with IIRA would not suffice, as demonstrated by the following proposition.

Consequently, replacing IICA with IRA wouldn’t suffice either, as IRA is weaker than

IIRA.

Proposition 9. Let |A| ≥ 2n + 4. There exists an aggregation rule ≽∗ that satisfies

RA, SP, AN, IIRA and MI and ≽(S,R)
∗ can not be represented by

∑
i∈N u

A,R
i for all

(S,R) ∈ Ω.

Proof. The following proof is adapted from Sprumont (2013). We prove the proposition

by identifying a representation that satisfies the axioms but is not a positive affine

transformation of the normalized sum of individual utility functions. For every (S,R) ∈

Ω, define

Ψ(S,R) := argmax
x∈△S

∏
i∈N

(uS,Ri (x) + 1)

and note that Ψ(S,R) is non-empty and for every x, y ∈ Ψ(S,R), uS,Ri (x) = uS,Ri (y)

for all i ∈ N . Hence, ψ
(S,R)
i := uS,Ri (x) + 1 for some x ∈ Ψ(S,R) is well defined. Now

consider the following representation of ≽(S,R)
∗ ,∑

i∈N

ψ
(A,R)
i uA,R

i .

39



As ψ
(A,R)
i is not necessarily the same for all i ∈ N , the representation is not necessarily

a positive affine transformation of
∑

i∈N u
A,R
i . What remains to show is that the

representation satisfies the axioms stated in the proposition. RA and SP are satisfied

as the representation is a weighted sum of individual utility functions with strictly

positive weights. AN is satisfied as any individual’s weight does not depend on the

individual’s index. MI is satisfied as the weights do not depend on the menu. Finally,

to see that IIRA is satisfied, assume that for (S,R) ∈ Ω there exists a set of redundant

alternatives C ⊆ Sc. Now consider R′ ∈ Rn where R′ ̸= R, R and R′ agree on Cc and

C is still redundant under R′. As any redundant alternative has a lottery that yields

the same product, redundant alternatives can be ignored in the maximization problem

involved in Ψ(S,R). Hence, (ψ
(A,R)
i )i∈N = (ψ

(A,R′)
i )i∈N . Note that IICA is violated

as changing individual preferences over comparable alternatives outside the menu can

affect the maximization problem and, consequently, the weights.

Similarly, we can replace the notion of comparable alternatives in MICA with

redundant alternatives, resulting in the following axiom.

Axiom MIRA (Menu Independence of Redundant Alternatives). For each (S,R) ∈ Ω

and S ′ ⊆ S where every a ∈ S \S ′ is redundant relative to S ′, ≽(S,R)
∗ and ≽(S′,R)

∗ agree

on S ′.

Analogously, MIRA does not suffice in Theorem 1.

Proposition 10. Let |A| ≥ 2n+4. There exists an aggregation rule ≽∗ that satisfies

RA, SP, AN, IIA and MIRA and ≽(S,R)
∗ can not be represented by

∑
i∈N u

S,R
i for all

(S,R) ∈ Ω.

A representation of ≽(S,R)
∗ that satisfies the stated axioms is

∑
i∈N ψ

(S,R)
i uS,Ri . The

proof is analogous to that of Proposition 9.
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