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Abstract

We consider the preferences of a decision maker that lives for finitely many

periods and hence faces a diminishing number of future periods as time passes.

We identify axioms that connect preferences across horizons and lead to ex-

ponential and quasi hyperbolic discounting. Existing axiomatizations for an

infinite horizon ignore the problem of changing horizons and are not applicable.

Existing axiomatizations for a finite horizon do not ensure identical discount-

ing across preference relations and are therefore insufficient. We also extend

the environment to allow for an uncertain time horizon.

Keywords: Finite horizon, indefinite horizon, exponential discounting, quasi

hyperbolic discounting, expected utility.

1 Introduction

In this paper we consider a decision maker, henceforth DM, who lives for a finite

number of time periods. In each period, the DM has preferences over the outcomes

she will receive in the remaining future periods. At time t the DM decides over

sequences of length l and at time t+1 over sequences of length l−1. Hence, the time

horizon varies across periods. This is different to an infinite horizon environment,
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where the horizon remains infinite across periods, in two important ways. First, we

cannot simply assume that preferences are identical across periods, since the DM has

preferences over different domains at different points in time. Instead, we have to

identify axioms that connect preferences across horizons. Second, there exists a final

period, where the DM decides over single outcomes, in absence of any inter-temporal

considerations. This allows us to axiomatize a utility representation for sequences,

where the per period valuation u is the utility of the agent over single outcomes,

justifying the common interpretation that u measures the well-being experienced in

that period.

We connect preferences through two axioms, Constancy and Consistency. Con-

stancy says that preferences are independent, both of the history leading up to the

decision and the number of future time periods that are unaffected by the DM’s deci-

sion. Hence, preferences over the outcomes for the next k periods in period t, when a

total of k+ l periods lie ahead, are the same as preferences over the outcomes for the

next k periods in period t+1, when a total of k+ l−1 periods lie ahead. Consistency

says that the preferences between two sequences are the same before and after some

outcome is received. Hence, preferences over sequences of length l are the same as

preferences over sequences of length l+1 where the initial outcome is fixed. We show

that these two axioms, together with a non-triviality assumption, lead to an expo-

nentially discounted utility representation for every preference relation, where the

discount factor and the per period valuation are the same across preference relations.

We then relax Consistency and identify weaker conditions that lead to quasi hyper-

bolic discounting. These conditions identify all situations where a quasi hyperbolic

discounter still behaves consistently. Finally, we extend the environment and require

the DM to compare sequences of different lengths. This allows us to derive a utility

representation where a positive per period valuation of an outcome informs us that

the agent prefers to receive an additional period containing that outcome and where

a negative valuation informs us that the agent prefers not to receive an additional

period containing that outcome.

Our framework applies to a broad range of models, as we impose no assumptions

on the outcome space. For instance, one could model the preferences of a player in a

finitely repeated finite stage game or the preferences of a worker choosing consump-

tion levels in R+ in life cycle model. Our framework allows us to formulate axioms

that have straight forward interpretations in terms of how the DM plans for the

future, instead of imposing mathematical separability conditions on each preference

relation individually.
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2 Preliminaries

We begin by outlining the primitives of our framework. Let T := {1, 2, ..., T} denote

the set of time periods where T ∈ N is the final period. In each period the DM

receives an outcome from the set of outcomes A. The set A contains at least two

elements, but otherwise we impose no restrictions. For instance, A could be finite or

it could be uncountably infinite and unbounded. In any period, the preferences of

the DM depend on the history of previously received outcomes. Let H :=
⋃

k∈TA
k−1

denote the set of all possible histories. We denote the length of history h by |h|. After
history h, the DM faces decisions that result in sequences of outcomes with length

T −|h|. We allow for uncertainty and hence require the DM to have preferences over

distributions of sequences. Formally, for any h ∈ H, ≽h is a preferences relation on

△(AT−|h|). The family of all preference relations is denoted by Φ := {≽h}h∈H .
Next we explain the notation that is used throughout the paper. a and b de-

note generic outcomes, h and g denote generic histories of outcomes and X and

Y denote generic lotteries over sequences of outcomes. When we use generic out-

comes, histories or lotteries in an axiom, we mean that the condition holds for all

outcomes, histories or lotteries. For simplicity of exposition, we restrict our anal-

ysis to simple lotteries, which put positive probability on finitely many sequences.

Note that this assumption is of no significance for our results and the extension to

continuous distributions is straightforward. For some lottery X let SX = {s1, ..., sn}
denote the finite set of sequences that X can realize. Then X can be written as

((p1, ..., pn) , (s1, ..., sn)), where pi denotes the probability which X puts on sequence

si such that
∑n

i=1 pi = 1 and pi > 0 for all i ∈ {1, ..., n}. We then denote by (X, a)

the lottery ((p1, ..., pn), ((s1, a), ..., (sn, a))), where (si, a) is the sequence that results

from adding a ∈ A to the end of si. Similarly, (a,X) denotes a lottery that results

from adding a to the beginning of every sequence in X.

Finally, we describe how the DM deals with uncertainty. We assume that any ≽h∈
Φ can be represented by an expected utility representation Uh, such that Uh(X) =∑n

i=1 piUh(si). Note the this reduces the problem of evaluating lotteries, to the

problem of evaluating sequences, but imposes no restrictions on how sequences are

evaluated. We refrain from explicitly stating axioms for expected utility, since they

are well known (von Neumann and Morgenstern, 1944; Anscombe and Aumann,

1963; Savage, 1972). All of our results can be extended to non-expected utility

representations, as long as these representations are unique up to a positive affine

transformation.
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3 Exponentially Discounted Utility

The standard model of evaluating sequences of outcomes is exponentially discounted

utility, henceforth EDU.

Definition 1. ≽h has an EDU representation if there exists a discount factor δh ∈ R+

and a per period valuation uh : A 7→ R such that Uh(at, ..., aT ) =
∑T

k=t δ
k−t
h uh(ak).

Even if each ≽h∈ Φ has an EDU representation, δh and uh might differ across his-

tories. Since we want to ensure that the DM has the same EDU representation at

all times, it is not sufficient to impose axioms on each preference relation separately,

but in addition we have to identify axioms that connect preferences across histo-

ries. In the following we explore two notions of connecting preferences. The first is

Constancy, meaning that preference are the “same” at all times. The second notion

is Consistency, meaning that the decision of future self’s are considered optimal by

the current DM. We show that these two conditions, together with a non-triviality

assumption, are sufficient for EDU and hence one does not have to impose axioms

on each preference relation separately.

The most obvious way to connect preferences across histories is to assume that

preferences simply do not depend on the history. In an infinite horizon environment,

where all decisions are between sequences of infinite length, this would reduce Φ

to a single preference relation. However, in our framework the DM has to evaluate

sequences of different lengths at different points in time. History independence there-

fore can only ensures that preferences are the same at time t for all histories leading

up to t.

Axiom 3.1 (History independence). If |h| = |g| then ≽h=≽g.

Preferences at time t and t + 1 on the other hand cannot formally be the same,

since the DM decides between lotteries over sequences of length T − t+ 1 and T − t

respectively. In order to make these decisions comparable, consider a decision at time

t where the outcome of the final period T is fixed, such that the decision only affects

the outcomes of the periods t to T − 1. Even though T − t+1 periods lie ahead, the

DM only decides over the outcomes for the next T − t periods. Ignorance of common

futures says that in these situations the DM ignores the final period and decides as

if she was in period t+ 1, facing sequences of length T − t.

Axiom 3.2 (Ignorance of common futures). For every h ∈ H there exists a g ∈ A|h|+1

such that (X, a) ≽h (Y, a) if and only if X ≽g Y .
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Even though we formulate the axiom such that it can stand on its own, we want the

reader to interpret Axiom 3.2 in conjunction with Axiom 3.1, as a single condition.

We refer to this condition as Constancy.

Definition 2. Φ satisfies Constancy if Φ satisfies Axioms 3.1 and 3.2.

Constancy ensures that DM makes the same decisions at all times, independent of

the history and the number of unaffected future periods. Importantly, it implies

that in situations where a decision only affects the outcome of the current period,

the DM decides as if she was in the final period, in absence of any inter-temporal

considerations.

The second way of connecting preferences is Consistency, an axiom that is stan-

dard in the literature on dynamic choice.1

Axiom 3.3 (Consistency). (a,X) ≽h (a, Y ) if and only if X ≽(h,a) Y .

Consistency says that the DM’s preferences between two lotteries are the same before

and after receiving some outcome a. This ensures that future selves do not make

decisions that are sub-optimal from the current self’s perspective. Note that our

framework is agnostic about the beliefs of the DM regarding her preferences in the

future. The axiom ensures that the DM decides optimally at all times, independent

of her beliefs.

Our axioms, besides connecting preference relations, also impose strong sepa-

rability conditions on each utility representation. As it turns out, Constancy and

Consistency together are sufficient for EDU, as long as the DM cares about the order

in which outcomes are received. With the following axiom we rule out the knife-edge

case where the agent is indifferent between any sequence and its permutation.

Axiom 3.4 (Non-trivial time preference). There exists a history f ∈ H, a sequence

s ∈ AT−|f | and a permutation of s denoted by s̃ such that s ≻f s̃.

Note that the axiom only requires one preference relation in Φ to care about the

order of outcomes. Constancy and Consistency ensure that the same time preference

holds for all preference relations.

We now state the main result of this paper.

Theorem 1. Let T > 2. Φ satisfies Axioms 3.1 to 3.4 if and only if there exists a

δ ∈ R+ \ {1} and a u : A 7→ R such that for all h ∈ H

Uh(at, ..., aT ) =
T∑

k=t

δk−tu(ak),

1See for instance Kreps and Porteus (1978).
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where t = |h| + 1. Furthermore, δ is unique and u is unique up to a positive affine

transformation.

We prove Theorem 1 in Appendix A. The proof is simple and self contained. First,

note that we require T > 2.2 A utility representation for T = 2 is provided by

Equation 5 in Appendix A. Second, note that u is a utility representation of ≽h for

all h such that |h| = T − 1. This means that the per period valuation u is the utility

function of the DM in the final period, where only one outcome lies ahead. This is

unique to our framework and supports the common interpretation that u indicates

the well-being experienced in a single period. Finally, note that due to Axiom 3.4, δ

cannot be 1. The following proposition provides a representation for the case where

Axiom 3.4 is violated.

Proposition 1. Let T > 2. Φ satisfies Axioms 3.1 to 3.3 and violates Axiom 3.4 if

and only if there exists a u : A 7→ R such that for all h ∈ H, either

Uh(at, ..., aT ) =
T∑

k=t

u(ak)

or

Uh(at, ..., aT ) = σT−t

T∏
k=t

u(ak),

where t = |h|+ 1 and σ ∈ {−1, 1}.

In Appendix B we prove Proposition 1 and discuss the case in more detail.

4 Quasi hyperbolic discounting

There is evidence that some decision makers violate Consistency (Thaler, 1981; Kirby

and Herrnstein, 1995). In an effort to account for such behaviour, some models

assume that a sequence (a1, a2, a3, ...) is evaluated by u(a1) + βδu(a2) + βδ2u(a3) +

..., where β is an additional discount factor that applies to periods after the first

one. Since more weight is put on the immediate period, the DM’s preferences might

reverse, once the consequences of a decision become imminent. However, as we

will show next, preferences can only reverse when consequences are imminent, while

preferences are consistent under any other circumstances. Hence, quasi hyperbolic

discounting is not defined by total inconsistency, but instead by consistency in many

situations. The following axioms identify these situations.

2It is well known that separability conditions that are sufficient for sequences of length greater

than 2 are insufficient sequences of length 2. See for instance Karni and Safra (1998).
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Axiom 4.1 (Quasi consistency). (a, b,X) ≽h (a, b, Y ) if and only if (b,X) ≽(h,a)

(b, Y ).

Axiom 4.2 (Two period consistency). Let |h| = T − 2. (a,X) ≽h (a, Y ) if and only

if X ≽(h,a) Y .

Axiom 4.3 (Path independent consistency). If (a,X) ≽h (a, Y ), X ≽(h,a) Y and

X ≽(h,b) Y then (b,X) ≽h (b, Y ).

Axiom 4.1 says that preferences are consistent, as long as the consequences of a

decision are not imminent. Axiom 4.2 says that preferences are consistent between

the final period and the second to last period. This is due to the fact that preference

reversals under hyperbolic discounting occur solely due to trade-offs between the

present and future periods. If there is only one period ahead, no such trade-offs can

be made. Axiom 4.3 says that if preferences are consistent for one path leading up

to the decision, then they are consistent for any path. Hence, preference reversals

occur independent of the path leading up the the decision. Again, this is due to the

fact that under hyperbolic discounting reversals occur exclusively due to the trade-off

between the present and future periods.

Relaxing Axiom 3.3 to Axioms 4.1, 4.2 and 4.3 in Theorem 1 leads to quasi

hyperbolic discounting.

Theorem 2. Let T > 3. Φ satisfies Axioms 3.1, 3.2, 3.4, 4.1, 4.2 and 4.3 if and only

if there exists a δ ∈ R+ \ {1}, β ∈ R+ and a u : A 7→ R such that for all h ∈ H

Uh(at, ..., aT ) = u(at) + β
T∑

k=t+1

δk−tu(ak),

where t = |h|+ 1. Furthermore, δ and β are unique and u is unique up to a positive

affine transformation.

We prove Theorem 2 in Appendix C. Other axiomatizations of quasi hyperbolic dis-

counting have been provided by Hayashi (2003) and Montiel Olea and Strzalecki

(2014) for an infinite horizon and by Anchugina (2017) for a finite horizon. The

axiomatization of Fishburn (1970) for EDU under a finite horizon could be easily ex-

tended to quasi hyperbolic discounting. As discussed in the previous section, axioms

for a finite horizon are insufficient in our framework as one has to impose additional

axioms to connect preferences across horizons. We will show in Section 6 that ax-

iomatizations for an infinite horizon are insufficient for our framework as well.
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5 Undetermined horizon

We now extend the framework of Section 2, by requiring the DM to compare se-

quences of different lengths. One might think of a model where the DM’s decisions

influence the length of her life time. For instance, the DM might have to decide

whether to partake in risky activities like smoking or extreme sports. Alternatively,

one might think of an indefinitely repeated game, where the time horizon is uncertain,

as the game can end in any period with some exogenous probability. Even though in

an indefinitely repeated game the DM’s decisions do not affect the length of the time

horizon, the DM has to compare sequences of different lengths in order to evaluate a

lottery over sequences of different lengths.

We extend the set of time periods to N1 and let H =
⋃

k∈N1
Ak−1 be the set of all

possible histories. For any h ∈ H, ≽h is a preferences relation on △(
⋃

k∈N1
Ak), the

set of lotteries over sequences of all finite lengths. While there are infinitely many

time periods, the time horizon is not infinite, as the DM is never asked to evaluate

sequences of infinite length. Any period t ∈ N1 could potentially be reached by the

DM, depending on choice or chance, but outcomes will ultimately be receive only up

to some finite period. As before, the family of preference relations is denoted by Φ.

We want to build on our previous insights and hence impose the axioms of Section

3 with a few adjustments. First, note that in Section 3 the lotteries X and Y in

Axioms 3.2 and 3.3 necessarily refer to lotteries over sequences of the same length.

In this section we require Axioms 3.2 and 3.3 to hold for any two lotteries X and

Y , even when they realize sequences of different lengths. Second, note that now

every preference relation is over the same domain and hence we can impose an axiom

stronger than Axiom 3.1, which equates all preference relations.

Axiom 5.1 (History independence). ≽h=≽g.

Axiom 5.1 reduces Φ to a single preference relation, which we denote by ≽.

Let Um be a utility representation of ≽, where sequences of lengthm are evaluated

according to
∑m

k=1 δ
k−1u(ak). Moreover, let Um+1 be a utility representation of ≽,

where sequences of length m + 1 are evaluated according to
∑m+1

k=1 δk−1u(ak). We

know from Theorem 1 that Um and Um+1 must exist. Hence, as in Theorem 1, the

DM compares sequences of the same length by the exponentially discounted sum of

per period valuations and discounts identically across different horizons.

Next we explore how the DM compares sequences of different lengths. Since

both Um and Um+1 are representations of the same preference relation, Um must be a

positive affine transformation of Um+1. Hence, there exists an α ∈ R+ and µ ∈ R such

that Um = αUm+1+µ. For instance, when the DM compares the sequence (a, b) to the
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outcome a, a sequence of length 1, then (a, b) ≽ a if and only if α [u(a) + δu(b)]+µ ≥
u(a). Note that u is unique only up to a positive affine transformation. This means

that u(b) > 0 alone cannot tell us anything about whether the DM prefers to receive

an additional period containing b over time ending after a. Note further that α and

µ depend on the u that is chosen for the representation. This raises the question

whether there exists a ũ such that α = 1 and µ = 0, implying that (a, b) ≽ a if and

only if ũ(b) ≥ 0. We find that an additional axiom is required to ensure the existence

of such a ũ.

Axiom 5.2 (Horizon separability). There exist outcomes c, d, e ∈ A such that 1
2
[c]+

1
2
[(d, e)] ∼ 1

2
[d] + 1

2
[(c, e)] and c ≻ d.

The probabilities to receive either c or d in the first period are the same for both

lotteries. Likewise the probability to receive an addition period containing e is the

same for both lotteries. Axiom 5.2 merely states that the DM does not care whether

the additional period is received after c or after d. Note that since we are building on

the axioms of Section 3, e is already being evaluated independently from the outcome

of the first period.

Adding Axiom 5.2 to Theorem 1 and assuming a stronger notion of History In-

dependence yields the following result.

Theorem 3. Φ satisfies Axioms 3.2, 3.3, 3.4, 5.1 and 5.2 if and only if there exists

a δ ∈ R+ \ {1} and a ũ : A 7→ R such that

U(a1, ..., am) =
m∑
k=1

δk−1ũ(ak),

for all m ∈ N1. Furthermore, δ is unique and ũ is unique up to a positive linear

transformation.

We prove Theorem 3 in Appendix D. As mentioned earlier, the per period valuation

of Theorem 1 and 2 is in fact the utility function of the DM when choosing over single

outcomes, allowing for the interpretation that u measures the well-being experienced

in a single period. On top of that, ũ has the property that desirable outcomes induce

positive values and undesirable outcomes induce negative values. ũ(a) > 0 informs

us that the DM is better off when a sequence is extended by the outcome a and

ũ(a) < 0 informs us that the agent is worse off. Note that we allow for the cases

where either all outcomes in A are desirable or no outcome is desirable.
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6 Discussion

In this section we discuss in detail how our framework and axioms relate to the ex-

isting literature. We restrict our attention to axiomatizations where the DM faces

uncertainty, since a utility representation for preferences over deterministic sequences

cannot simply be extended to risky decisions by imposing axioms for expected utility

ex post.3 First, we discuss EDU for lotteries over finite sequences. The only ax-

iomatization for this case is provided by Fishburn (1970). A similar axiomatization

by Anchugina (2017) considers the more restrictive case of sequences of independent

lotteries and is therefore not applicable to our framework. Second, we discuss EDU

for lotteries over infinite sequences. Here the only axiomatization is provided by

Epstein (1983). Finally, our paper is related to axiomatizations of preferences in

dynamic decision problems with a finite horizon. To our knowledge, we are the first

to axiomatize EDU in such an environment. We compare our approach to Kreps and

Porteus (1978), the paper most closely related.

6.1 Finite Sequences

Fishburn (1970) considers the preference relation of a DM over lotteries over se-

quences of some fixed length m ∈ N. He assumes that the preference relation has an

expected utility representation and identifies three axioms that lead to exponentially

discounted utility. In the following we consider the case where each ≽h∈ Φ satisfies

these axioms. Fishburn’s central axiom is Indifference to autocorrelation, which says

that the DM only cares about the marginal distributions of outcomes induced by a

lottery over sequences. We denote the marginal distribution of outcomes of period t

induced by lottery X by Xt ∈ △A. Note that t = |h|+ 1.

Axiom 6.1 (Indifference to autocorrelation). If Xk = Yk for all k ∈ {t, ..., T} then

X ∼h Y .

Axiom 6.2 (Monotonicity). (X, at+1, ..., aT ) ≽h (Y, at+1, ..., aT ) if and only if

(at, ..., ak, X, ak+2, ..., aT ) ≽h (at, ..., ak, Y, ak+2, ..., aT ) for all k ∈ {t, ..., T − 1}.

Axiom 6.3 (Stationarity). (a,X) ≽h (a, Y ) if and only if (X, a) ≽h (Y, a).

These axioms lead to the following result.

3This is due to the fact that ordinal representations are unique only up to a positive monotonic

transformation. The existence of an additive representation for ordinal preferences does not ensure

that the cardinal representation is additive as well, as there are monotonic transformations that are

not additive.
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Proposition 2. Φ satisfies Axioms 6.1, 6.2 and 6.3 if and only if for each h ∈ H

there exists a δh ∈ R+ and a uh : A 7→ R such that

Uh(at, ..., aT ) =
T∑

k=t

δk−t
h uh(ak),

where t = |h| + 1. Furthermore, each δh is unique and each uh is unique up to a

positive affine transformation.

Note that even though the DM is an exponential discounter at every point in time,

the DM might have a different discount factor and per period valuation after each

history. Hence, Fishburn’s axioms are insufficient for ensuring the representation of

Theorem 1. In order to ensure that for all h, g ∈ H, δg = δh and that uh is a positive

affine transformation of ug, we require additional axioms to connect preferences across

histories. Note that History independence is not sufficient, as it does not connect

preferences across different horizons. Either Constancy or Consistency would suffice.

Of course, one could start from Fishburn’s axioms and then impose either Con-

stancy or Consistency to ensure identical discounting. However, we belief that axioms

of inter-temporal decision making are naturally interpreted by thinking about the be-

haviour of the DM at different points in time. For instance, consider the normative

appeal of Axiom 6.1.

If ≽h satisfies Axiom 6.1 then there exists ut,h to uT,h such that Uh(at, ..., aT ) =∑T
k=t uk,h(ak), hence the axiom is quite powerful as it immediately ensures that ≽h

is additively separable. It is not clear however how one should interpret the axiom.

Is it normatively appealing? Should it apply to all situations or only hold in certain

environments? To illustrate the point, consider the following example. The DM can

consume one of two goods, a or b, in each period t ∈ {1, 2}. The goods are such

that they are more enjoyable if they are consumed more often. Therefore 1
2
[(a, a)] +

1
2
[(b, b)] ≻∅

1
2
[(a, b)]+1

2
[(b, a)], even thought the two lotteries induce the same marginal

distribution of outcomes for both periods, violating Axiom 6.1. Hence Axiom 6.1

seems reasonable only in environments where preferences do not depend on past

outcomes. However, Axiom 6.1 does not rule out that a ≻a b and b ≻b a, allowing

for the paradoxical case where the consumer is both indifferent to autocorrelation

and influenced by the history of outcomes. We believe that our approach, where

Indifference to autocorrelation follows from axioms that connect the DM’s preferences

at different points in time, is more insightful than assuming Axiom 6.1 directly.

6.2 Infinite Sequences

Epstein (1983) considers a preference relation on △(A∞), which we denote by ≽∞,
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and assumes that ≽∞ has an expected utility representation U∞. In contrast to our

framework, Epstein restricts the outcome space to A = [0, L] for L ∈ R+ and assumes

that U∞ is not only continuous in probability but also continuous in outcomes. We

present Epstein’s axioms in terms of our notation.

Axiom 6.4 (Infinite horizon consistency). (a,X) ≽∞ (a, Y ) if and only if X ≽∞ Y .

Axiom 6.5 (Independence of common infinite futures). (X, s) ≽∞ (Y, s) if and only

if (X, r) ≽∞ (Y, r), where X, Y ∈ △(A2) and s, r ∈ A∞.

These axioms lead to the following result.

Proposition 3. ≽∞ satisfies Axioms 6.4 and 6.5 if and only if there exists a δ ∈ (0, 1)

and a u : A 7→ R such that

U∞(a1, a2, ...) =
∞∑
k=1

δk−1u(ak).

Furthermore, δ is unique and u is unique up to a positive affine transformation.

In the following we show that these axioms, when applied to a finite horizon

environment, do not ensure exponentially discounted utility. First, note that there is

no straight forward way to translate Axiom 6.4 as a condition on a single preference

relation ≽m over △(Am) for m ∈ N. While adding an outcome to the beginning of an

infinite sequence results in an infinite sequence, adding an outcome to the beginning

of X ∈ △(Am) results in a lottery over sequences of length m + 1, which cannot

be evaluated by ≽m. Hence, we have to translate Epstein’s axioms in terms of our

framework, where Time consistency connects preferences at different points in time.

We assume that History independence is satisfied, such that Axiom 3.3 is the finite

horizon equivalent of Axiom 6.4. For the finite horizon equivalent of Axiom 6.5, we

suggest the following condition.

Axiom 6.6 (Independence of common futures). (X, s) ≽h (Y, s) if and only if

(X, r) ≽h (Y, r), where s, r ∈
⋃T−|h|−1

k=1 Ak.

Note that this translation is quite charitable, as we do not restrict X and Y to

lotteries over sequences of length 2.

Applying Epstein’s axioms to the finite horizon environment means to assume

that Φ satisfies History Independence, Axiom 3.3 and Axiom 6.6. This set of axioms

is strictly weaker than the axioms assumed in Theorem 1. For instance, Epstein’s

axioms are consistent with the existence of ut : A 7→ R for all t ∈ T such that

Uh(at, ..., aT ) =
∑T

k=t uk(ak) for all h ∈ H, where each ut ranks outcomes in A

differently. Hence, Epstein’s axioms, translated to the finite horizon environment,

are insufficient for ensuring the representation of Theorem 1.
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6.3 Dynamic Decision under a Finite Horizon

Kreps and Porteus (1978) consider an environment similar to ours, where the DM

has to make decisions at multiple points in time and the number of the remaining

periods decreases as time passes. Unlike in our framework, the DM has preferences

over the outcome in the current period and the continuation decision problem that

she will face in the following period. There are two key differences to our approach.

First, the timing of the resolution of uncertain might matter to the DM, whereas

our framework is agnostic about the time at which uncertainty is resolved. Second,

the DM might not simply prefer the continuation decision problem that contains

the most preferred outcome path, since she might be aware that her future self’s

will not choose that outcome path. In their final section, Kreps and Porteus (1978)

consider the case where the DM is indifferent towards the resolution of uncertainty

and satisfies History independence and Consistency. Note that this is equivalent to

our framework, where Φ satisfies Axioms 3.1 and 3.3. They find that, in terms of our

notation, ≽h is represented by Ut(at, ..., aT ) = ηt(at)Ut+1(at+1, ..., aT ) + θt(at), where

t = |h| + 1, but do not identify additional axioms that lead to EDU. The addition

of Axioms 3.2 and 3.4 is not trivial, which is corroborated by fact that the Kreps &

Porteus representation is the starting point of our analysis (Equation 1 in Appendix

A).

Appendix A

In this section we prove Theorem 1. History independence allows us to replace the

subscript on the utility functions by the time period t, where t = |h| + 1. Axiom

3.2 implies Ut(X, a) ≥ Ut(Y, a) ⇐⇒ Ut+1(X) ≥ Ut+1(Y ). Axiom 3.3 implies

Ut(a,X) ≥ Ut(a, Y ) ⇐⇒ Ut+1(X) ≥ Ut+1(Y ). Therefore, if we hold a fixed, Ut

and Ut+1 must represent the same preferences over lotteries from △(AT−t+1). Since

expected utility representations are unique up to a positive affine transformation, for

each t ∈ T \ {T} there exists γt+1 : A 7→ R+, ιt+1 : A 7→ R, ηt+1 : A 7→ R+ and

θt+1 : A 7→ R such that the following two equations hold.

Ut(at, ..., aT ) = ηt+1(at)Ut+1(at+1, ..., aT ) + θt+1(at). (1)

Ut(at, ..., aT ) = γt+1(aT )Ut+1(at, ..., aT−1) + ιt+1(aT ). (2)

We assume w.l.o.g. that there exists o ∈ A such that for all t ∈ T, Ut(o, ..., o) = 0.

This implies θt+1(o) = ιt+1(o) = 0. We abbreviate ηt+1(o) and γt+1(o) by η̄t+1 and

γ̄t+1.
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The proof proceeds as follows. First we consider the relation between UT−1 and

UT and show that UT−1 has a representation that takes the form of a polynomial.

We then consider the relation between UT−1 and UT−2 and show that UT−1 collapses

to exponential discounting. Finally, we show that if exponential discounting holds

for some Ut+1 it must also hold for Ut.

T-1 to T

We equate (1) and (2) at t = T − 1, which gives

ηT (a)UT (b) + θT (a) = γT (b)UT (a) + ιT (b). (3)

To make it easier on the eyes, we have replaced aT−1 with a and aT with b. a = o

implies ιT (b) = η̄TUT (b) and b = o implies θT (a) = γ̄TUT (a). Substituting these

identities, we find
γT (b)− γ̄T

UT (b)
=

ηT (a)− η̄T
UT (a)

= κ, (4)

where κ ∈ R is some constant, which holds for all a and b such that UT (a) ̸= 0 and

UT (b) ̸= 0. We solve (4) for ηT (a) and substitute in (1) at t = T − 1, which gives

UT−1(a, b) = γ̄TUT (a) + η̄TUT (b) + κUT (a)UT (b). (5)

T-2 to T-1

Next we show that κ = 0. We equate (1) and (2) at t = T − 2, which gives

ηT−1(a)UT−1(b, c) + θT−1(a) = γT−1(c)UT−1(a, b) + ιT−1(c). (6)

a, b = o implies ιT−1(c) = η̄T−1UT−1(o, c) and b, c = o implies θT−1(a) = γ̄T−1UT−1(a, o).

We substitute these identities and the representation from (5) in (6) and receive

UT (b) [ηT−1(a) [γ̄T + κUT (c)]− γT−1(c) [η̄T + κUT (a)]]

= η̄TUT (c)[η̄T−1 − ηT−1(a)]− γ̄TUT (a)[γ̄T−1 − γT−1(c)]. (7)

Note that b only appears in the very first term. Since we can freely vary UT (b) while

keeping the remaining terms constant, (7) can only hold if

ηT−1(a) [γ̄T + κUT (c)]− γT−1(c) [η̄T + κUT (a)] = 0. (8)

From (8) it follows that

γ̄T + κUT (c)

γT−1(c)
=

η̄T + κUT (a)

ηT−1(a)
=

η̄T
η̄T−1

. (9)

Furthermore, the right hand side of (7) must also be equal to 0. We solve (9)

for γT−1(c) and ηT−1(a) and substitute into the right hand side of (7) to find 0 =
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κ[γ̄T−1 − η̄T−1]. We show in Appendix B that γ̄T = η̄T implies indifference towards

the order of outcomes for all ≽t, which is ruled out by Axiom 3.4, and hence γ̄T ̸= η̄T .

(9) further implies γ̄T−1 ̸= η̄T−1 and therefore κ = 0. It then follows from (5) that

≽T−1 has an EDU representation with δ = η̄T
γ̄T

and u = UT .

t+1 to t

If we can show that the implication of Ut+1(at+1, ..., aT ) =
∑T

k=t+1 δ
k−t−1u(ak) is

that Ut also satisfies exponential discounting with the same discount factor and per

period valuation, then we have proven Theorem 1 by induction, since we have already

established that UT−1 is an exponentially discounted utility representations. We

equate (1) and (2) and substitute Ut+1 to receive[
T−1∑

k=t+1

δk−t−1u(ak)

]
[ηt+1(at)− δγt+1(aT )]

= γt+1(aT )u(at)− ηt+1(at)δ
T−t−1u(aT ) + ιt+1(aT )− θt+1(at). (10)

Since at+1 to aT−1 only appear in the very first term, (10) can only hold if ηt+1(at)−
δγt+1(aT ) = 0, implying that both ηt+1 and γt+1 are constant. Furthermore, the

right hand side of (10) must also be equal to 0. We set at = o to find ιt+1(aT ) =

η̄t+1δ
T−t−1u(aT ) and further ιt+1(aT ) = γ̄t+1δ

T−tu(aT ). Substituting ιt+1(aT ) in (2)

confirms that Ut is an exponentially discounted utility representation with per period

utility u and discount factor δ. This concludes the proof.

Appendix B

In this section we discuss the case where the DM is indifferent towards the order of

outcomes and show that if Constancy and Consistency are satisfied but Axiom 3.4

is violated, either each ≽h can be represented by

Uh(at, ..., aT ) =
T∑

k=t

u(ak), (11)

or each ≽h can be represented by

Uh(at, ..., aT ) = σT−t

T∏
k=t

u(ak), (12)

where σ ∈ {−1, 1} and u is unique up to a positive linear transformation. The part

T-1 to T in Appendix A still goes through and (5) holds. If the DM is indifferent

towards the order of outcomes then γ̄T = η̄T and hence the part T-1 to T does not
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go through. If κ = 0 anyway, then the rest of the proof goes through and preferences

can be represented by (11). Hence, we assume κ ̸= 0 for the rest of this section.

Consider two outcomes a and b such that a ≻T b and consider the preferences of

the DM between 1
2
[(a, a)] + 1

2
[(b, b)] and (a, b). The deterministic sequence gives the

better outcome once with certainty and the lottery either gives the better outcome

twice or not at all. Note the similarity to risk attitudes over money, where the DM

is risk averse if $M is preferred to 1
2
$0 + 1

2
$2M and risk loving if preferences are

reversed. Similarly, if κ < 0 then the DM strictly prefers (a, b) and is in some sense

risk averse regarding the total number of preferred outcomes. If κ > 0 the DM prefers

the lottery and is in some sense risk seeking.

First, we consider κ > 0. ŨT−1 = κUT−1 + γ̄2 is a positive affine transformation

and hence ŨT−1 is a representation of ≽T−1. We define u := γ̄T+κUT , which preserves

the property that u is a representation of ≽T and find

ŨT−1(a, b) = u(a)u(b). (13)

Note that u(a) must be strictly positive for all a ∈ A to ensure that γT (a) > 0 and

hence κ > 0 is not possible when UT has no lower bound.

Next we assume that Ut+1(at+1, ..., aT ) =
∏T

k=t+1 u(ak) and show that this implies

that Ut has the same representation. We equate (1) and (2) and substitute Ut+1 to

receive [
T−1∏

k=t+1

u(ak)

]
[ηt+1(at)u(aT )− γt+1(aT )u(at)] = ιt+1(aT )− θt+1(at). (14)

Since at+1 to aT−1 only appear in the very first term, (14) can only hold if ηt+1(at)u(aT )−
γt+1(aT )u(at), implying that ηt+1 is a positive linear transformation of u. Further-

more, 0 = ιt+1(aT ) − θt+1(at) implying that θt+1 is constant. Substituting ηt+1 in

(2) confirms that Ut has the same multiplicative representation. This proves (12) for

σ = 1 by induction.

Second, we consider κ < 0. The difference to κ > 0 is that multiplying a rep-

resentation by κ is no longer a positive affine transformation. Hence, we define

ŨT−1 := −κUT−1 − γ̄2 and u := −γ̄T − κUT and find

ŨT−1(a, b) = −u(a)u(b). (15)

Note that now u(a) must be strictly negative for all a ∈ A and κ < 0 is not possible

when UT has no upper bound.

The induction is the same as for κ > 0, with the only difference that ηt+1 is now

a negative linear transformation of u. This leads to the alternating sign from t to

t+ 1. This concludes the proof.
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Appendix C

In this section we prove Theorem 2. We advice the reader to get familiar with

Appendix A before reading this section. First, we show that Axiom 4.3 implies

(a,X) ≽t (a, Y ) if and only if (b, Y ) ≽t (b,X).

Proof. We assume (a,X) ≽t (a, Y ) and consider the two possible cases, X ≽t+1 Y

and Y ≻t+1 X. First, if X ≽t+1 Y then (b,X) ≽t (b, Y ) follows directly from

Path independence. For the second case, Y ≻t+1 X, we consider again two possible

cases, (a,X) ≻t (a, Y ) and (a,X) ∼t (a, Y ). First, if (a,X) ≻t (a, Y ) then not

(b, Y ) ≽t (b,X) since this would imply (a, Y ) ≽t (a,X) by Path independence.

Hence (b,X) ≻t (b, Y ). Second, if (a,X) ∼t (a, Y ) then (b, Y ) ≽t (b,X) and so

we need to show (b,X) ∼t (b, Y ), which we do by contradiction. Assume (a,X) ∼t

(a, Y ), Y ≻t+1 X and (b, Y ) ≻t (b,X). Then consider any lottery (a,X∗) such that

(a,X∗) ≻t (a,X) and denote Xε := εX∗ + (1 − ε)X. If (a,X∗) does not exist then

consider (a, Y ∗) instead such that (a, Y ∗) ≻ (a, Y ). As ε goes to 0, (a,Xε) ≻t (a, Y ),

Y ≻t+1 Xε and (b, Y ) ≻t (b,Xε), which contradicts Path independence. Hence

(b,X) ∼t (b, Y ).

(2) still holds. Furthermore, Axiom 4.2 implies that (1) holds at t = T − 1.

Finally, Axiom 4.1 implies (a, b,X) ≽t (a, b, Y ) if and only if (b,X) ≽t+1 (b, Y ) which

together with Axiom 4.3 implies (a, b,X) ≽t (a, b, Y ) if and only if (a,X) ≽t+1 (a, Y ).

Hence for any t ∈ T \ {T, T − 1} there exists ηt+1 : A
2 7→ R+ and θt+1 : A

2 7→ R such

that

Ut(at, ..., aT ) = ηt+1(at, at+1)Ut+1(at, at+2, ..., aT ) + θt+1(at, at+1). (16)

As in the previous section, we assume Ut(o, ..., o) = 0 w.l.o.g. and abbreviate

ηt+1(o, o) and γt+1(o) by η̄t+1 and γ̄t+1.

Since (2) and (1) hold at t = T − 1, the first part of the proof of Theorem 1 goes

through and (5) holds. We then consider the relation between UT−2 and UT−3 and

show that UT−3 has a representation that takes the form of a polynomial. Then we

consider the relation between UT−3 and UT−4 and show that UT−3 collapses to a quasi

hyperbolic discounting representation. Finally, we show that if quasi hyperbolic dis-

counting holds for some Ut+1 it must also hold for Ut

T-2 to T-3

This part is analogous to the part T-1 to T-2 in Appendix A. We equate (16) and

(2) at t = T − 2 and at = o, which gives

ηT−1(o, a)UT−1(o, b) + θT−1(o, a) = γT−1(b)UT−1(o, a) + ιT−1(b). (17)
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a = o implies ιT−1(b) = η̄T−1UT−1(o, b) and b = o implies θT−1(o, a) = γ̄T−1UT−1(o, a).

Substituting these identities, we find

γT−1 (b)− γ̄T−1

UT−1 (o, b)
=

ηT−1 (o, a)− η̄T−1

UT−1 (o, a)
= κ′, (18)

where κ′ ∈ R is some constant. We solve (18) for ηT−1(o, a) and substitute in (16) at

t = T − 2 and for at = o, which gives

UT−2(o, a, b) = γ̄T−1UT−1(o, a) + η̄T−1UT−1(o, b) + κ′UT−1(o, a)UT−1(o, b). (19)

T-3 to T-4

Next we equate (16) and (2) at t = T − 3 and for at = o, then substitute (19) and

find that κ′ = 0. This is analogous to the part T-2 to T-1 in Appendix A and

therefore details are omitted. κ′ = 0 and (18) imply that γT−1 is constant. Hence

(2) at t = T − 2 is

UT−2(a, b, c) = γ̄T−1UT−1(a, b) + η̄T−1UT−1(o, c). (20)

(a,X) ≽t (a, Y ) if and only if (b,X) ≽t (b, Y ), which we have shown to follow from

Path independence, implies that there exists ζ : A 7→ R+ and λ : A 7→ R such that

UT−2(a, b, c) = ζ(a)UT−2(o, b, c) + λ(a). (21)

We substitute (20) for a = o in (21) and then equate (20) and (21), which gives

UT−1(o, c)[η̄T−1 − ζ(a)η̄T−1] = ζ(a)γ̄T−1UT−1(o, b) + λ(a)− γ̄T−1UT−1(a, b). (22)

Since c only occurs in the very first term, this implies that η̄T−1 − ζ(a)η̄T−1 = 0 and

hence ζ(a) = 1 and further

γ̄T−1UT−1(o, b) + λ(a) = γ̄T−1UT−1(a, b), (23)

implying that UT−1 is additively separable and hence κ = 0 in (5). Substituting (5) in

(20) shows that UT−2 is a quasi hyperbolic discounting representation with δ = η̄T−1

γ̄T−1

and β = η̄T γ̄T−1

γ̄T η̄T−1
.

t+1 to t

If we can show that the implication of Ut+1(at+1, ..., aT ) = u(at+1)+β
∑T

k=t+2 δ
k−t−1u(ak)

is that Ut also satisfies quasi hyperbolic discounting with the same discount factors

and per period valuation, then we have proven Theorem 2 by induction, since we have
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already established that UT−1 and UT−2 are hyperbolic discounting representations.

We equate (16) and (2) and substitute Ut+1 to receive

β

[
T−1∑

k=t+2

δk−t−1u(ak)

]
[ηt+1(at, at+1)− δγt+1(aT )]

= γt+1(aT ) [u(at) + βδu(at+1)]− ηt+1(at, at+1)
[
u(at) + βδT−t−1u(aT )

]
+ ιt+1(aT )− θt+1(at, at+1). (24)

Since at+2 to aT−1 only appear in the very first term, (24) can only hold if ηt+1(at, at+1)−
δγt+1(aT ) = 0, implying that both ηt+1 and γt+1 are constant. Furthermore, the

right hand side of (24) must also be equal to 0. We set at, at+1 = o to find

ιt+1(aT ) = η̄t+1βδ
T−t−1u(aT ) and further ιt+1(aT ) = γ̄t+1βδ

T−tu(aT ). Substituting

ιt+1(aT ) in (2) confirms that Ut is a quasi hyperbolic discounting representation with

discount factors δ and β and per period valuation u. This concludes the proof.

Appendix D

In this section we prove Theorem 3. We start out by considering only comparisons

where both lotteries realize sequences of the same length, as it was the case in Section

3. We can show that there exists a δ and u such that for each m ∈ N1 there exists

a Um representing ≽ such that sequences of length m are evaluated according to∑m
k=1 δ

k−1u(ak). The proof is identical to the one in Appendix A. We simply replace

the notion of utility at time t, where T − t − 1 periods lie ahead, with utility from

sequences of length m, such that m = T − t− 1.

Each Um must be a positive affine transformation of Um+1, since they both rep-

resent the same preference relation. Hence, for each m ∈ N1 there exists αm+1 ∈ R+

and µm+1 ∈ R+ such that Um = αm+1Um+1 + µm+1. The following two lemmas

identify αm+1 and µm+1.

Lemma 1. αm+1 = 1 for all m.

Proof. Consider the following indifference relation, which must hold according to

Axiom 5.2.
1

2
[c] +

1

2
[(d, e)] ∼ 1

2
[d] +

1

2
[(c, e)]. (25)

Equating expected utility of both sides according to U1 gives (1 − α2)u(c) = (1 −
α2)u(d) and since u(c) ̸= u(d) it must be that α2 = 1. According to Axiom 3.3,

the DM remains indifferent when we add any outcome a to the beginning of each

sequence.
1

2
[(a, c)] +

1

2
[(a, d, e)] ∼ 1

2
[(a, d)] +

1

2
[(a, c, e)]. (26)
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Equating expected utility of both sides according to U2 shows that α3 = 1. We can

add another a to the beginning to show that α4 = 1 and so on.

Lemma 2. µm+1 = δµm for all m.

Proof. Consider three sequences q = (q1, ..., qm), r = (r1, ..., rm) and s = (s1, ..., sm−1)

such that q ≻ r ≻ s. If such sequences do not exist, since all sequences of length

m− 1 are preferred to sequences of length m, then consider s ≻ r ≻ q instead. Since

≽ satisfies expected utility, there must exist a p ∈ (0, 1) such that

p[q] + (1− p)[s] ∼ r. (27)

Equating expected utility of both sides of (27) according to Um−1 gives

p

m∑
k=1

δk−1u(qk) + (1− p)
m−1∑
k=1

δk−1u(sk)−
m∑
k=1

δk−1u(rk) = (1− p)µm. (28)

According to Axiom 3.3, the DM remains indifferent when we add any outcome a to

the beginning of each sequence in (27) and hence

p[(a, q)] + (1− p)[(a, s)] ∼ (a, r). (29)

Equating expected utility of both sides of (29) according to Um gives

p
m∑
k=1

δk−1u(qk) + (1− p)
m−1∑
k=1

δk−1u(sk)−
m∑
k=1

δk−1u(rk) =
1

δ
(1− p)µm+1. (30)

Since the left hand side of (28) is equal to the left hand side of (30) we find that

µm+1 = δµm.

Finally, consider the following positive affine transformation of U1, U := U1 +
µ2

δ

and define ũ = u + µ2

δ
. We show that U is the representation of Theorem 3. First,

note that U(a) = ũ(a). Furthermore,

U(a1, .., am) = U1(a1, ..., am) +
µ2

δ

=
m∑
k=1

δk−1u(ak) + µ2

m∑
k=2

δk−2 +
µ2

δ

=
m∑
k=1

δk−1u(ak) +
µ2

δ

m∑
k=1

δk−1

=
m∑
k=1

δk−1ũ(ak).

(31)

This concludes the proof.
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